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INTRODUCCION  
 

Dada la importancia cuantitativa y funcional de la evapotranspiración en zonas semiáridas, 

su estimación regional es crucial para la gestión hídrica de las mismas (Glenn et al. 2007) así 

como para la comprensión de la mayor parte de procesos biológicos asociados a la disponibilidad 

hídrica en estos ambientes, (Noy-Meir 1973). Sin embargo, el desarrollo de modelos para la 

estimación regional de la evapotranspiración basados en datos facilitados mediante teledetección, 

es aún escaso en zonas semiáridas. En esta Tesis profundizaremos en el conocimiento de las vías 

metodológicas óptimas para la cuantificación regional de la evapotranspiración en ecosistemas 

semiáridos mediante la evaluación y reformulación de aquellos modelos que presentan un mayor 

potencial en este tipo de ambientes. 

 

Importancia de la evapotranspiración  

La evapotranspiración (E), definida como la transferencia total de agua desde una 

superficie vegetada a la atmósfera, es fruto de dos procesos simultáneos: i) la evaporación o 

proceso físico de transferencia de agua de las superficies, incluyendo el agua de lluvia 

interceptada por la vegetación, a la atmósfera,y ii) la transpiración o proceso fisiológico vegetal 

por el que el agua absorbida por medio de las raíces se transfiere a la atmósfera a través de los 

estomas. La energía que acompaña la evapotranspiración se conoce como calor latente, λE 

(también escrito LE), donde λ es el calor latente de vaporización. En esta Tesis E, λE (o LE) se 

usarán para referir al mismo proceso, según éste sea considerado desde el punto de vista hídrico 

(E) o desde el punto de vista energético (λE o LE). 

De este modo la evapotranspiración es el elemento común entre el balance hídrico y 

energético de la superficie terrestre, ambos resumidos en las ecuaciones 1 y 2 respectivamente: 

 

P = E + R + Gr + ∆S + L                                                                                                   (1) 

Rn = LE + H + G                                                                                                                (2) 

 

En la ecuación 1, P es la precipitación, R la escorrentía superficial, Gr la variación de la 

reserva hídrica subterránea, ∆S es la variación en la reserva de agua del suelo y L la entrada o 
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salida de escorrentía lateral (todas ellas en mm). En la ecuación 2, Rn es la radiación neta, G es 

el calor transmitido al suelo, H es el calor sensible (todas ellas en W m-2).  

La evapotranspiración es la componente mas importante del balance hídrico terrestre 

después de la precipitación (Leuning et al. 2008). En promedio, el 57% de la precipitación global 

es devuelta a la atmósfera por este medio (Glenn et al. 2007) y tres quintas partes de la radiación 

neta terrestre son usadas en forma de calor latente, con estimas provenientes de distintos modelos 

variando entre el 48 al 88% (Trenberth et al. 2009). Debido a su vinculación con el balance 

hídrico y energético, E repercute en el enfriamiento de la superficie terrestre y en la formación de 

nubes. La evapotranspiración es, por tanto, un factor clave en la interacción entre la superficie 

terrestre y la atmósfera (Domingo et al. 2004) pudiendo afectar  al clima a escala local y regional 

(Kustas & Norman 1996). Por todo ello, E es uno de los componentes fundamentales a 

considerar en la modelización del cambio climático, balance hídrico, productividad primaria, 

inundaciones y sequías (Fisher et al. 2008).  

 

La evapotranspiración en ecosistemas áridos y semiáridos 

En zonas áridas y semiáridas, la importancia de E se amplifica ya que, en ellas, dicho 

proceso devuelve a la atmósfera entre el 90 y 100% de la precipitación anual (Glenn et al. 2007). 

Las zonas áridas y semiáridas existen en todos los continentes y cubren más del 45% de la 

superficie terrestre (Asner et al. 2003; Schlesinger et al. 1990). Estas regiones mantienen al 37% 

de la población humana, estando previsto, según la tendencia del cambio climático, un aumento 

de la aridez (Reynolds et al. 2007). Específicamente, las zonas semiáridas son las que ocupan 

mayor superficie siendo éstas  muy sensibles a perturbaciones tales como cambio climático, 

fuego, sequía o cambios de uso del suelo (Safriel et al. 2003). Es por ello que el conocimiento 

del intercambio hídrico entre la superficie y la atmósfera es especialmente crucial en dichas 

áreas. 

Las áreas semiáridas, son extremamente dinámicas con una variabilidad interanual de las 

precipitaciones de ±23-30% de la media a largo plazo (Rasmusson 1987). En ellas el patrón 

temporal y espacial de E, estrechamente ligado la disponibilidad hídrica, presenta 

particularidades específicas. En zonas semiáridas la disponibilidad hídrica suele presentar una 

dinámica pulsátil debido al régimen irregular de las precipitaciones (Schwinning et al. 2004). El 

carácter generalmente disperso de la vegetación y la marcada heterogeneidad superficial de las 

áreas semiáridas (Puigdefabregas et al. 1999) determina las fluctuaciones temporales y 
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espaciales de la disponibilidad hídrica repercutiendo en el patrón espacio-temporal de E 

(Villagarcía et al. 2010). Además es importante considerar que en áreas semiáridas existe una 

fuerte conexión entre los ciclos de agua y carbono (Baldocchi 2008; Domingo et al. 2011) ya que 

la disponibilidad hídrica es el principal factor de control sobre la actividad biológica (Brogaard 

et al. 2005) lo que afecta al control que la vegetación ejerce sobre la componente transpirativa de 

E.  

La correcta estimación de E en áreas semiáridas es vital para la gestión hídrica de las 

mismas, el estudio de la recarga de acuíferos, el estudio del efecto de los cambios de uso del 

suelo sobre el balance hídrico así como para determinar si en dichas áreas la vegetación es capaz 

de acceder a fuentes de agua alternativas a la precipitación (Villagarcía et al. 2010). El desarrollo 

de métodos para la estimación de E a escala de paisaje en dichas áreas es, por tanto, un área de 

investigación prioritaria. Especialmente si consideramos la dificultad y coste de las mediciones 

de dicho proceso en zonas semiáridas que ocupan áreas de gran extensión a menudo remotas 

(Domingo et al. 1999). La teledetección es la única fuente capaz de proporcionar datos 

espacialmente distribuidos del estado hídrico y energético de la superficie así como de sus 

propiedades biofísicas (Kustas & Norman 1996) y por lo tanto, la única vía factible hasta ahora 

para la estimación de E a escalas regionales con un razonable grado de exactitud (Kalma et al. 

2008).  

 

Sistemas de medida 'in-situ' de la evapotranspiración 

En los últimos años, se han desarrollado múltiples métodos para la medición in-situ de E 

(ver revisiones en Glenn et al. 2007; Rana & Katerji 2000; Shuttleworth 2007; Verstraeten et al. 

2008) lo que a su vez ha posibilitado el avance en la modelización regional dada la necesidad de 

medidas fiables para la validación y evaluación de los modelos basados en teledetección. Entre 

los sistemas de medida, los más ampliamente usados para la validación de modelos han sido los 

lisímetros de precisión, los métodos de medición de flujos micro-meteorológicos (método de la 

razón de Bowen y el método de correlación de remolinos o Eddy Covariance (EC)) y los 

métodos hidrológicos basados en el balance hídrico de superficie. Los métodos hidrológicos 

están principalmente enfocados a la estimación regional de E a escalas temporales largas 

(mensual, anual, interanual) y precisan de datos rigurosos de precipitación y escorrentía (Wang 

& Dickinson 2012). Los lisímetros de precisión ofrecen medidas continuas con un alto grado de 

exactitud (Howell et al. 1995) sin embargo están limitadas a varios metros cuadrados (Wang & 

Dickinson 2012) y su aplicación en áreas de vegetación natural es problemática debido a la 
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variabilidad y mayor profundidad de sus sistemas radiculares (Glenn et al. 2007). Por su parte los 

métodos de flujos micro meteorológicos, ofrecen medidas en continuo a escalas espaciales 

medias (alrededor de 1 km2) (Horst 1999; Kljun et al. 2004) comparables con la resolución 

ofrecida por los sistemas de teledetección (Glenn et al. 2007). Por ello, finalmente la técnica de 

correlación de remolinos se ha convertido en el estándar para la medida en superficie de los 

flujos de vapor de agua (Baldocchi 2003; Scott 2010) y el principal medio para la validación y 

evaluación de métodos de estimación regional de E (Glenn et al. 2007). Actualmente se ha 

creado una serie de redes de medición de E mediante EC alrededor del mundo como parte del 

programa FLUXNET (Baldocchi et al. 2001) que incluye instalaciones en Europa 

(CarboEurope), Norteamérica (Ameriflux y Fluxnet_Cánada), Brasil, Asia (AsiaFlux), Australia 

(OzFlux) y África. Hasta hace pocos años las mediciones de E mediante EC en áreas semiáridas 

eran escasas estando la mayor parte de las estaciones de medición ubicadas en áreas forestales o 

agrícolas. Sin embargo durante los últimos años el interés de la “comunidad FLUXNET” por las 

áreas semiáridas se ha intensificado (FluxLetter 2010) con la consiguiente ampliación de la red 

de mediciones en zonas semiáridas lo que posibilita el desarrollo de la modelización regional de 

E en dichas áreas (Domingo et al. 2011). 

 

La modelización regional de E en ecosistemas semiáridos 

Desde los años 80, coincidiendo con el comienzo de las aplicaciones de la teledetección, la 

visión científica general se ha volcado en el desarrollo de métodos para la cuantificación de E a 

escala de paisaje debido a la importancia de su variabilidad espacial (Kalma et al. 2008). Muchos 

de los modelos de estimación de E se han desarrollado, sin embargo, en regiones templadas del 

mundo siendo aún escaso su desarrollo en ecosistemas áridos y semiáridos. Esto se debe en 

parte, a que las particularidades propias de estos ecosistemas hacen especialmente difícil la 

modelización de E empleando datos remotos.  

La magnitud de E en ecosistemas semiáridos es generalmente baja presentando aumentos 

puntuales tras los pulsos de lluvia (D’Odorico & Porporato 2006). Para modelizar el patrón 

pulsátil que presenta E en estas condiciones se requieren datos a una escala temporal diaria o 

superior que solo algunos sensores remotos ofrecen, como MODIS (Moderate Resolution 

Imaging Spectrometer) o SEVIRI (Spinning Enhanced Visible Infrared Imager), a costa de una 

resolución espacial inferior (1-3 km) (Domingo et al. 2011). En áreas semiáridas mediterráneas 

en las que la disponibilidad hídrica y energética presentan asincronía temporal (Serrano-Ortiz et 

al. 2007) E puede alcanzar magnitudes similares al error promedio que afecta a los modelos 
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basados en teledetección (~ 0.8 mm dia-1, Seguin et al. 1999) lo que dificulta su estimación 

(Domingo et al. 2011). Otra particularidad es que en estas áreas en las que la vegetación suele ser 

dispersa y agregada, el suelo y la vegetación responden a factores de control diferentes y 

presentan dinámicas distintas. Mientras la evaporación del suelo (Es) ocurre principalmente 

durante e inmediatamente después de la precipitación empleando el agua de las capas 

superficiales del suelo, la transpiración por parte de la vegetación (Ec) sucede de un modo más 

progresivo empleando agua de capas mas profundas y depende tanto del control biológico como 

de la radiación solar (Wang & Dickinson 2012).  

Para la modelización de E en áreas heterogéneas con vegetación dispersa, como las 

semiáridas, suelen emplearse modelos multifuente que describen el intercambio de los flujos 

turbulentos, H y LE, entre la superficie y la atmósfera a través de un símil eléctrico controlado 

mediante un sistema de resistencias aerodinámicas y superficiales (Lhomme et al. 2012). En su 

versión más sencilla, éstos dividen la superficie en dos componentes (modelos de dos fuentes): 

suelo y vegetación. Los modelos de dos fuentes fueron propuestos para mejorar la modelización 

de E mediante teledetección en áreas de vegetación dispersa (Wang & Dickinson 2012) ya que 

permiten la consideración de los procesos diferenciales que afectan a ambos componentes. Así, 

los modelos de dos fuentes han resultado en mejores estimaciones de E en áreas semiáridas que 

los modelos mono-fuente, que asumen la superficie como un dosel vegetal continuo y 

homogéneo, (Anderson et al. 2007; Norman et al. 1995). Además, este tipo de modelos aportan 

una información más detallada de los flujos en superficie ya que permiten cuantificar la partición 

de E, entre suelo (Es) y vegetación (Ec), que ha sido señalada como un factor de vital importancia 

para la comprensión de las dinámicas de la vegetación en sistemas áridos y semiáridos (Huxman 

et al. 2005). Por todo ello en esta Tesis nos centraremos en la evaluación de modelos que 

permitan esta perspectiva multifuente. 

Son muchos los modelos desarrollados en los últimos años para la estimación regional de E 

utilizando datos de teledetección (ver revisiones en Courault et al. 2005; Glenn et al. 2007; 

Kalma et al. 2008; Kustas & Norman 1996; Li et al. 2009). A grandes rasgos y en el marco de 

esta Tesis podemos distinguir dos tipos de modelos para la estimación de E empleando datos de 

teledetección : i) Modelos residuales que obtienen LE como un residuo de la ecuación del 

balance energético (Ec. 2) mediante estimación de las restantes variables de la ecuación (Rn, G y 

H) y ii) Modelos directos que estiman LE de forma directa mediante la caracterización de las 

resistencias superficiales que rigen el flujo de vapor de agua entre la superficie y la atmósfera.  
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Los modelos residuales han sido hasta ahora los modelos mas populares para la estimación 

de E en áreas semiáridas (Garcia et al. 2007; Domingo et al. 2011). Estos modelos se basan en la 

estimación directa del calor sensible, H, mediante la denominada “ecuación de resistencia global 

para la transferencia de calor” (Brutsaert 1982) según la cual H depende del gradiente térmico 

entre la superficie y el aire, así como de la resistencia aerodinámica que dificulta la transferencia 

de calor desde la superficie a la atmósfera. Uno de los modelos residuales mas robustos para 

estimar E bajo una perspectiva multifuente y que mejores resultados ha demostrado en 

condiciones extremas (Kustas & Anderson 2009; Zhan et al. 1996) es el modelo de dos fuentes 

de Norman et al. (1995), conocido como Two-source model (TSM). La formulación del TSM ha 

sido evaluada con éxito en áreas de vegetación dispersa (Kustas y Norman, 1999) y áreas 

semiáridas (Timmermans et al. 2007) aunque principalmente bajo condiciones de irrigacion 

(Colaizzi et al. 2012; French et al. 2007; Gonzalez-Dugo et al. 2009). La aplicación del TSM 

precisa la temperatura superficial de las dos fuentes, suelo (Ts) y vegetación (Tc), mientras que la 

resolución espacial de los sensores remotos actuales es aún demasiado grosera para distinguir 

entre ambas, ofreciendo, en la mayoría de los casos, una temperatura superficial agregada de 

ambas (TR). Para solventar esta limitación el TSM incluye un proceso iterativo (Norman et al. 

1995), basado en la estimación de un valor inicial de Tc asumiendo que ésta transpira a su nivel 

potencial (Priestley & Taylor 1972). Dicho valor inicial de Tc se recalcula en caso de que el 

balance energético (Ec. 2) no se cumpla. Este proceso iterativo y las asunciones en las que se 

basa no han sido probados en áreas con fuertes limitaciones hídricas en las que la transpiración 

potencial raramente se alcanza. Aunque existen dos formulaciones posibles del TSM, con 

resistencias en serie o en paralelo, en función de si se asume o no interacción entre las 

temperaturas de vegetación y suelo, no está claro cual de las dos es más eficaz en condiciones 

semiáridas naturales. Un problema adicional que afecta a los modelos residuales, como el TSM, 

aplicados a partir de datos remotos, es que H y por tanto LE, puede ser calculado únicamente a 

escala instantánea ya que la formulación para el cálculo de H no permite su aplicación con datos 

de temperatura promediados a escala diaria o superior. Sin embargo para muchas aplicaciones 

datos de LE son requeridos a escalas diarias, diurnas o superiores para lo que se emplean 

métodos de extrapolación temporal que a su vez conllevan cierto error asociado (Glenn et al. 

2007).  

Los modelos directos, por su parte, estiman LE de forma directa mediante la ecuación de 

Penman Monteith (Monteith 1964) o alguna de sus simplificaciones como la ecuación de 

Priestley-Taylor (Priestley & Taylor 1972). La ecuación de Penman-Monteith (ecuación PM) 
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considera que el flujo de vapor de agua (LE) desde una superficie vegetada esta determinado por 

la energía disponible y el déficit de presión de vapor y que dicho flujo está restringido 

fundamentalmente por la resistencia superficial que opone la superficie vegetada al paso de 

vapor de agua, aunque también por una resistencia aerodinámica. El parámetro clave para la 

aplicación de la ecuación PM es la resistencia superficial, especialmente en áreas semiáridas, en 

donde ésta es mucho mayor que la resistencia aerodinámica (Leuning et al. 2008; Were et al. 

2007). Uno de los primeros modelos que aplicó de forma regional la ecuación de PM empleando 

datos de teledetección propuso una relación empírica de la resistencia superficial con el índice de 

área foliar ofrecido por el sensor MODIS (Cleugh et al. 2007). Este trabajo dio lugar a una línea 

de modelización regional de E que evolucionó hacia una perspectiva multifuente mediante la 

consideración de los factores que afectan, tanto al suelo como a la vegetación, para la estimación 

de la resistencia superficial del sistema (Leuning et al. 2008; Mu et al. 2007; Zhang et al. 2010). 

Leuning et al. (2008) propusieron un modelo de aplicación regional, conocido como Penman-

Monteith-Leuning model (PML), en el que la componente transpirativa se modeliza en base a la 

radiación absorbida y el déficit de presión de vapor, mientras que la evaporación del suelo se 

considera una fracción constante de su tasa de evaporación en equilibrio. Dicho modelo precisa 

de datos meteorológicos de amplia disponibilidad y del índice de área foliar procedente de 

teledetección, así como dos parámetros que pueden obtenerse mediante optimización: la 

conductancia máxima de las hojas (gsx) y la humedad del suelo (f) que controla la evaporación 

del suelo y que se considera constante. El modelo PML presentó buenos resultados en áreas de 

muy diferente clima y tipo de vegetación incluyendo áreas de vegetación dispersa tipo sabana. 

Aún así, la eficacia del modelo fue inferior en áreas más secas debido a la consideración del 

parámetro f constante (Leuning et al. 2008).  

Fisher et al. (2008) propusieron una vía alternativa para la estimación directa de E 

empleando la ecuación de Priestley-Taylor (ecuación PT) (Priestley & Taylor 1972). Dicha 

ecuación permite la estimación regional de E en equilibrio, aquella que tiene lugar en 

condiciones ideales de disponibilidad hídrica y atmósfera saturada, reemplazando las resistencias 

superficiales y aerodinámicas por un factor constante conocido como constante de Priestley-

Taylor (Zhang et al. 2009). El modelo propuesto por Fisher et al. (2008), al que nos referiremos 

como Priestley-Taylor-Jet Propulsion Laboratory model (modelo PT-JPL), emplea una serie de 

parámetros biofísicos limitadores que reducen la tasa de E en equilibrio hasta su tasa real en 

función de las condiciones de la superficie. El modelo distingue entre los factores que afectan al 

suelo y a la vegetación bajo una perspectiva multifuente y fue diseñado para estimar E a escala 
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mensual. El modelo PT-JPL presentó buenos resultados en 36 áreas de la red FLUXNET bajo 

diferentes condiciones climáticas y tipos de vegetación mostrando mejores resultados en áreas 

hídricamente limitadas que otros modelos previos (Fisher et al. 2008; 2009). La principal 

fortaleza del modelo PT-JPL es que presenta una gran potencialidad para aplicaciones globales 

dada su sencillez y por estar basado mayoritariamente en datos procedentes de sensores remotos 

(índices de vegetación, radiación neta, radiación PAR absorbida) (Garcia et al. 2013). Sin 

embargo dos aspectos limitan aún su aplicabilidad: i) la resolución temporal de sus estimas 

(mensual), que resulta demasiado grosera para muchas aplicaciones y ii) su dependencia de 

ciertos datos que aún no ofrecen los sensores remotos, como son la humedad relativa y el déficit 

de presión de vapor, necesarios para determinar el parámetro biofísico que controla la 

evaporación del suelo. 
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Objetivos y estructura de la Tesis 

A pesar del gran desarrollo que la modelización regional de E ha tenido durante los últimos 

años, pocos son los modelos diseñados y puestos a prueba en áreas semiáridas naturales con 

fuertes limitaciones hídricas en donde la modelización de la evapotranspiración es aún un reto. 

En esta Tesis abordaremos diversas cuestiones teóricas y prácticas en relación al desarrollo de 

modelos de estimación de la evapotranspiración bajo estas condiciones extremas. Gran parte del 

trabajo se realiza en áreas semiáridas mediterráneas del sureste español en donde en los últimos 

años se han instalado diversas estaciones meteorológicas que incluyen sistemas de medición de 

flujos micro meteorológicos mediante EC (Domingo et al. 2011). Haciendo uso de las 

mediciones in-situ facilitadas en dichas estaciones, evaluaremos tres modelos de estimación de la 

evapotranspiración de aplicabilidad regional, un modelo residual (Two-source model, TSM) y 

dos modelos directos (Penman-Monteith-Leuning model, PML y Priestley-Taylor-Jet Propulsion 

Laboratory model, PT-JPL). Estos modelos han demostrado gran potencial para su aplicación en 

áreas semiáridas de vegetación dispersa pero no han sido probados aún bajo condiciones tan 

extremas de estrés hídrico como las estudiadas en la presente Tesis. Así mismo, desarrollaremos 

diversas modificaciones de la formulación original de dichos modelos, para mejorar su eficacia 

en ecosistemas naturales semiáridos de vegetación dispersa.  

 

Los objetivos específicos de esta Tesis abordados en los cuatro siguientes capítulos son: 

 

1) Evaluar la eficacia de un modelo residual (TSM) a escala instantánea (estimaciones de 

H y LE cada 15 min) en condiciones semiáridas naturales mediterráneas y determinar como sus 

dos formulaciones posibles, con resistencias en serie o en paralelo, responden  ante dichas 

condiciones (Capítulo 1).  

  

2) Determinar los principales factores que afectan a la eficacia del un modelo residual 

(TSM) para ofrecer estimas instantáneas en condiciones semiáridas naturales mediterráneas y 

determinar la capacidad de este tipo de modelos para obtener valores diurnos de H y LE 

mediante métodos de extrapolación temporal (Capítulo 2). 
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3) Evaluar la eficacia de un modelo directo (PML) para estimar valores diarios de LE en 

áreas naturales semiáridas mediante la reformulación del parámetro f como una variable 

temporal dependiente de los cambios en la humedad del suelo (Capítulo 3). 

 

4) Evaluar y adaptar un modelo directo (PT-JPL) para estimar LE a escala diaria en vez de 

mensual y reformular el parámetro biofísico que controla la evaporación del suelo basado 

exclusivamente en datos remotos de temperatura superficial y albedo (Capítulo 4). 
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ABSTRACT 
 
A Two-Source Model (TSM) for surface energy balance, considering explicitly soil and 

vegetation components, was tested under water stress conditions. The TSM evaluated 

estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent 

heat flux (LE) as a residual from the surface energy balance equation. The analysis was 

performed in a semiarid Mediterranean tussock grassland in southeast Spain, where H 

is the dominant flux and LE rates are low, challenging conditions under which the TSM 

has not been validated before. We evaluated two different resistance schemes: series 

and parallel; as well as the iterative algorithm included in the TSM to disaggregate the 

soil-surface composite temperature into its separate components. Continuous field 

measurements of composite soil-vegetation surface temperature (TR) and bare soil 

temperature (Ts) from thermal infrared sensors were used for model testing along with 

canopy temperature estimates (T’c), derived from TR and Ts.  

Comparisons with Eddy covariance and field data showed that the TSM produced 

reliable estimates of net radiation (Rn) and H fluxes, with errors of ~30% and ~10%, 

respectively, but not for LE, with errors ~90%. Despite of lower errors (~10%) in 

estimating H using parallel resistance, the series scheme increased slightly the 

correlations (R2 = 0.78-0.80 vs. R2 = 0.75-0.77) and was also more robust in 

disaggregating soil and canopy fluxes. Differences between model runs using the 

iterative algorithm to disaggregate TR and the simplified version that uses separate 

inputs of Ts and T’c were minor. This demonstrates the robustness of the iterative 

procedure to disaggregate a composite soil-vegetation temperature into separate soil 

and vegetation components in semiarid environments with good prospects for image 

applications.  

 

 

Keywords: Mediterranean drylands; surface temperature; two-source model; surface 
energy fluxes; Priestley-Taylor assumption; parallel and series resistance network. 
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INTRODUCTION 
 

Land surface temperature is an integrated variable determined by the interaction between 

the land surface and the atmosphere (Choudhury 1992), and it is a key factor for partitioning 

available energy into sensible heat flux (H) and latent heat flux (LE) (Kustas and Norman 1996). 

Consequently, land surface temperature is one of the remote sensing variables most widely used 

for surface flux modelling, as shown by the large number of papers published since the 1980’s 

(for review see Glenn et al. 2007; Kalma et al. 2008; Kustas and Anderson 2009).    

Some difficulties associated with the application of remotely sensed surface temperature 

for land surface flux modelling have been pointed out. They include angular dependence 

(Rasmussen et al. 2011), atmospheric and emissivity correction requirements (Dash et al. 2002), 

and differences between aerodynamic and radiometric surface temperature (; Chehbouni et al. 

1997; Norman and Becker 1995). These difficulties have contributed to scepticism in the 

research community about its operational usefulness (Cleugh et al. 2007; Hall et al. 1992). 

Nonetheless, great advances have been made in application of thermal infrared remote sensing to 

land surface flux estimation, and today, a wide range of operational remote sensing models 

relying on the use of surface temperature is available (Kalma et al. 2008; Kustas and Anderson 

2009).  

This paper focuses on physical models based on a direct estimation of the sensible heat 

flux, which is governed by the bulk resistance equation for heat transfer (Brutsaert 1982), and 

relies on the surface-to-air temperature gradient. The latent heat flux can then be estimated as the 

difference between the available energy minus the sensible heat flux. These models were 

originally designed from a one-source perspective where the soil-canopy system was represented 

by an ensemble surface temperature, called the “aerodynamic temperature” (Taero), which 

determines the total sensible heat flux (Kustas and Anderson 2009). The drawback of this 

perspective is that the aerodynamic temperature cannot be measured by remote sensing. 

Therefore, in some one-source models where Taero has been replaced by the radiometric surface 

temperature (TR), an extra resistance, called the excess resistance (Rex), has been  included to 

account for the differences between these two temperatures (see Norman and Becker 1995 for 

clarification of the thermal terminology). Appropriately calibrated, one-source models have 

shown satisfactory estimates of surface energy fluxes in heterogeneous landscapes (Bastiaanssen 

et al. 1998; Kustas et al. 1996; Troufleau et al. 1997), however, they show a highly empirical 
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dependency which questions its operational application, particularly in areas where no field flux 

measurements are available.  

To overcome these limitations, one-source models have evolved into a multisource 

formulation. Following this trend, the Two-Source Model (TSM) for sensible heat flux (H) 

designed by Norman et al. (1995), provides a more realistic representation of the turbulent and 

radiation exchanges over partial vegetation canopies than one-source models (Timmermans et al. 

2007). The TSM accommodates the difference between TR and Taero by considering soil (Hs) and 

canopy (Hc) sensible heat fluxes separately, using the temperature of soil (Ts) and canopy (Tc) 

respectively. Since remote sensing resolution is often too coarse to distinguish between Ts and Tc, 

the TSM model includes an algorithm for estimating Ts and Tc from mono-angle TR. This 

algorithm assumes as a first condition that canopy latent heat flux (LEc) responds to a potential 

rate estimated by the Priestley-Taylor equation (Priestley and Taylor 1972). From this starting 

point, the iterative procedure estimates Ts and Tc and solves the soil and canopy turbulent heat 

fluxes by applying the surface energy balance equation to canopy and soil separately, and 

assuming Tc, Ts and TR have a nonlinear relationship (see next Section for more details). 

Depending on the coupling assumed between soil and canopy fluxes, the TSM can be applied 

under two different resistance networks: the parallel approach, which assumes no interaction 

between sources, and series approach, which allows interaction between soil and canopy 

(Norman et al. 1995).  

Sensitivity analyses of the TSM have shown that it is more robust than one or other two-

source temperature models (Zhan et al. 1996), and generally outperforms one-source schemes in 

extreme climatic conditions (Kustas and Anderson 2009). In addition, the TSM allows surface 

energy fluxes between soil and canopy to be distinguished. This makes possible to obtain 

separate soil evaporation and canopy transpiration estimates, critical to understanding vegetation 

processes and water dynamics in drylands (Huxman et al. 2005; Reynolds et al. 2000). Such 

evidences suggest that the TSM is a good candidate for application to Mediterranean drylands. 

The effectiveness of the TSM model has been successfully proven in partially covered 

agricultural areas, including semiarid areas, but mainly under irrigated conditions (Colaizzi et al. 

2012b; French et al. 2007; Gonzalez-Dugo et al. 2009; Kustas and Norman 1999a; Li et al. 

2005). Only a few studies have tested the TSM model under natural semiarid conditions, most of 

them at the Walnut Gulch (AZ, USA) experimental site (Norman et al. 1995; Timmermans et al. 

2007; Zhan et al. 1996), and no experimental analysis of the TSM effectiveness in Mediterranean 

drylands has been previously presented.  
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This paper explores the usefulness of the TSM for surface flux estimation in a 

Mediterranean tussock grassland located in southeast Spain. In these ecosystems, water 

availability and energy supply conditions do not coincide, resulting in extremely low 

evapotranspiration rates and dominant H (Rana and Katerji 2000), which makes for very 

challenging conditions for running the model. At the same time, two practical aspects of the 

TSM were analyzed for model application in these specific conditions: the most appropriate 

arrangement of resistances (parallel or series approach), and the behaviour of the iterative 

procedure included in the model to retrieve canopy and soil temperatures. 

Even though parallel resistance network was originally proposed for sparsely vegetated 

semiarid regions, and series approach for denser vegetation cover (Kustas and Norman 1997; 

Norman et al. 1995), there is no agreement about which approach offers better results in semiarid 

sparse vegetation. Kustas and Norman (1999a) found better results using the series resistance 

network in an irrigated cotton crop in central Arizona, whereas Li et al. (2005) found similar 

results with either parallel or series formulation in corn and soy crops under a wide range of 

fractional vegetation cover and soil moisture conditions. Due to its greater simplicity, and based 

on Li et al. (2005), later work has preferably applied the parallel TSM formulation (Sánchez et 

al. 2008; Timmermans et al. 2007) with good results under natural semiarid ecosystems, but it 

has never been properly compared with the series approach under these conditions.  

With regard to the iterative procedure for separating canopy and soil temperatures and 

fluxes, some uncertainties have previously been described concerning the best empirical value 

for the Priestley- Taylor constant, αPT (usually αPT = 1.3) (Agam et al. 2010; Kustas and Norman 

1999a). Colaizzi et al. (2012a) also reported unreliable partitioning between soil and canopy 

fluxes using the iterative procedure based on  Priestley-Taylor in irrigated row crops. Therefore, 

reevaluation of the effectiveness of this iterative procedure under Mediterranean natural semiarid 

conditions, where potential evapotranspiration is rarely reached and iteration is strongly forced, 

seems highly advisable. 

These two aspects of the TSM implementation in Mediterranean drylands were evaluated 

by: i) applying the two possible resistance approaches, series and parallel, to our field site and 

comparing them, and ii) comparing the results from TSM using a composite soil-vegetation 

temperature TR and the iterative procedure for flux partitioning, with results using separate Ts and 

Tc - and hence without iteration- to evaluate uncertainties associated with the iterative procedure 

included in the TSM formulation. 
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A dataset of continuous ground measurements during 5-months was used in this 

assessment. This allowed the effectiveness of the TSM to be evaluated under a wide range of 

natural micrometeorological and water availability conditions. 

 

MODEL DESCRIPTION 
 

We used the TSM proposed by Norman et al. (1995) including the latest improvements 

proposed by Kustas and Norman (1999a). This model is based on the Surface Energy Balance 

equation (SEB) which can be formulated for the whole canopy-soil system (Eq.1) as well as for 

the canopy layer and the soil layer (designed by c and s subscripts respectively) (Eq. 2 and 3). 

 

Rn = LE + H + G                                                                                                                (1) 

Rnc = Hc+ LEc                                         (2) 

Rns = Hs+ LEs + G                     (3) 

 

where Rn is net radiation and G is soil heat flux, which includes all the fluxes in W m-2.  

This way, all fluxes can be estimated for the canopy and soil layers with the exception of the soil 

heat flux (G) which was originally proposed to be estimated as a constant fraction of Rns 

(Choudhury 1987) (Eq.7).   

 

Rn = Rnc + Rns                         (4) 

H = Hc + Hs                          (5) 

LE = LEc + LEs                      (6) 

G = cGRns                   (7) 

 

More detailed methods to estimate G have been recently used to test the TSM (Colaizzi et 

al. 2012b; Kustas et al. 2012) based on Santanello and Friedl (2003) but showing still 

considerable uncertainty. Therefore, we used measured G to reduce the effect of G uncertainties 

over LE estimates, more sensitive to errors due to the low magnitude of LE characterizing 

Mediterranean drylands (Domingo et al. 2011).  
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A Beer’s law formulation was originally proposed for partitioning net radiation between 

the soil and vegetation (Norman et al. 1995). However, this method results in significant 

systematic errors for sparse canopies with relatively hot soil surfaces and some authors only 

recommend it for canopies with nearly full cover (Kustas and Norman 1999b). As an alternative 

for sparse canopies, a more physically sound algorithm considering short-wave and long-wave 

components was proposed by Kustas and Norman (1999a). This method requires incoming short-

wave radiation as input and considers transmission of direct and diffuse short-wave radiation, 

and the transmission of long-wave radiation through the canopy by the Campbell and Norman 

(1998) formulation. This can be expressed as in Equations 8 to 11: 

 

SLnRn cscc )1)(1( ατ −−+=                                                                                          (8) 

SLnRn ssss )1( ατ −+=                       (9) 

 

where S (W m-2) is the incoming shortwave radiation, τs is solar transmittance through the 

canopy, αs is soil albedo, αc is the canopy albedo. Estimates of τs, αs and αc are computed 

following the equations 15.4 to 15.11 in (Campbell and Norman 1998) and based on LAI, the 

reflectances and trasmittances of soil and a single leaf, and the proportion of diffuse irradiation, 

assuming that the canopy has a spherical leaf angle distribution. 

Lns and Lnc (W m-2) are the net soil and canopy long-wave radiation, respectively, 

estimated using the following expression: 

 

( )[ ][ ]csskyLc LLLLAIkLn 2exp1 −+Ω−−=                       (10) 

( ) ( )[ ] scLskyLs LLLAIkLLAIkLn −Ω−−+Ω−= exp1exp            (11) 

 

where kL (kL ≈ 0.95) is the long-wave radiation extinction coefficient, which is similar to 

the extinction coefficient for diffuse radiation with low vegetation, i.e., Leaf Area Index (LAI) 

lower than 0.5 (Campbell and Norman 1998). Ω is the vegetation clumping factor proposed by 

Kustas and Norman (1999a) for sparsely vegetated areas, which can be set to one when 

measured LAI implicitly includes the clumping effect (i.e. LAI from the Moderate Resolution 



Capítulo 1 

 22 

Imaging Spectroradiometer, MODIS) (Anderson et al. 1997; Norman et al. 1995; Timmermans 

et al. 2007), and Ls, Lc and Lsky (W m-2) are the long-wave emissions from soil, canopy and sky. 

The Stefan–Boltzman equation based on soil, canopy and air temperatures, and vapor pressure 

(Brutsaert 1982) can be used to compute Ls, Lc and Lsky.  

To estimate Hc and Hs, the TSM resistance network may be considered to be either in 

parallel (TSMP) or in series (TSMS) (Fig. 1). TSMP assumes that the air temperature above the soil 

surface is independent of the vegetation temperature, while TSMS permits interaction between 

soil and vegetation heat fluxes, influencing the temperature in the air-canopy interface.  

 

 

Figure 1.. Resistances and flux separation for the parallel (top) and 
series (bottom) versions of TSM where z is reference height; Tc, Ts, and 
TR are radiometric temperatures of canopy, soil and the aggregated 
surface of both respectively; Ta is air temperature; rs, ra, rAH and rx are 
surface, aerodynamics and total boundary layer resistances respectively 
(details in text) and Rn, G, LE and H are net radiation, soil heat flux, 
latent heat flux and sensible heat flux respectively (c and s subscripts 
denote soil and canopy, respectively).  
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The TSMP expression for Hc and Hs is as follows: 
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where rAH (m s-1) is the aerodynamic resistance to turbulent heat transport between the 

canopy source/sink height (Eq. 11):  
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where z is the height where air temperature and wind speed are measured, d (m) is the 

zero-plane displacement height, zom (m) is the momentum roughness length , zoh (m) is the heat 

roughness length, and Ψm and Ψh are the stability correction functions for sensible heat and 

momentum flux, respectively, which depend on the Monin-Obukhov length, L (m). The method 

proposed by Schaudt and Dickinson (2000) was used for d and zom estimation, considering 

shrubland land cover type and a crown width ratio of 1. zoh was estimated as a fraction of zom as 

postulated by Garratt and Hicks (1973), i.e., zoh= zom/exp(kB-1), where kB-1
≈ 2.  

 

rs (m s-1) is the resistance to heat flow in the boundary layer immediately above the soil 

surface. In the Kustas and Norman (1999a) updated TSM, rs was estimated considering the effect 

of the surface-air temperature difference over the free convective velocity based on Kondo and 

Ishida (1997): 
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where c = 0.0025 and b = 0.012 and us is the wind speed (m s-1) at a height above the soil 

surface where the effect of soil surface roughness is minimal. This can be estimated following 

Goudriaan (1977) (see Appendix C of Norman et al. 1995). 

For the TSMs, Hc and Hs are defined by 

s

acs
Ps r

TT
CH

−= ρ                  (16) 

x

acc
Pc r

TT
CH

−= ρ                  (17) 

 

where Tac (K) is the air temperature in the canopy-air space included in Eq. 18:  

 

a

aac
P r

TT
CH

−= ρ                                                                                                                (18) 

 

where ra (m s-1) is computed using the same equation previously defined for rAH (m s-1) 

(Eq. 14), but with zoh = zom. 

rx (m s-1) is the total boundary layer resistance of the complete canopy estimated from the 

wind speed within the canopy air space (see Appendix A in Norman et al. 1995).  

The TSM is based on single-time surface radiometric temperature observations (TR) which 

is related to the soil (Ts) and canopy (Tc) radiometric temperatures based on the fractional 

vegetation cover within the sensor field of view,  fc, as follows: 

 

[ ] 4/1
44 )1( sccR TfTfcT −+=                         (19) 

 

where all temperatures are in K. 

In the TSM Tc and Ts are estimated from TR by iteration for Equations 12-13 (TSMP) or 16-

17 (TSMS). As a starting point for determining the divergence between soil and canopy fluxes, 
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the iteration procedure uses the Priestley-Taylor equation (Priestley and Taylor 1972) (Eq.20) to 

estimate an initial LEc. 

cGPTc RnfLE
γ

α
+∆
∆=                (20) 

where αPT is the Priestley-Taylor parameter (≈1.3), fG is the fraction of leaf area index 

(LAI) that is green or actively transpiring, ∆ is the slope of the saturation vapor pressure-

temperature curve at Tc (kPa K-1) and γ is the psychrometric constant (kPa K-1).  

Once the initial LEc is obtained, an initial Hc is derived using the estimated Rnc from 

Equation 2 and Tc is obtained from inversion of Equations 13 (TSMP) or 17 (TSMS). Ts is 

estimated from this initial Tc by Eq.19 and Hs by Eq. 12 or 16 (depending on the resistance 

approach). Finally an initial LEs can be obtained by Eq. 3 using estimated Rns and G. This 

equation system is the basis of the iterative procedure. If the estimated LEs is above zero, 

iteration stops, as a reliable solution has been reached. On the contrary, when the estimated LEs 

is below zero, an unrealistic situation under daytime conditions is assumed since condensation in 

the soil is very unlikely to occur. This is considered a sign of water stress, and consequently LEs 

is set to zero and LEc falls from its initial potential rate. Therefore, the initial LEc is overridden 

and αPT is iteratively reduced until the solutions for Tc and Ts agree with measured TR through 

Eq. 19 and realistic latent heat fluxes are found for both canopy and soil (LEs ≥0 and LEc ≥0 for 

daytime) (Norman et al. 1995; Kustas et al. 2012). Sometimes, even when LEs and LEc are set at 

zero, the resulting Hs (residually estimated from Eq. 3) exceeds the energy available to the soil 

(Hs > Rns - G). In such situations, the iterative procedure, originally designed to use estimated G 

from Eq. 7, considers unreliable the constant value of cg used in Eq. 7 and finds a “residual 

solution” by inverting G from Eq. 3 to satisfy both the soil and canopy surface energy balances 

(Norman et al. 1995). As in our study, measured values of G were used for model running, those 

cases for which iteration was not able to reach the soil energy closure when LEs = 0 and LEc = 0 

using measured G, were considered as an iteration failure and were not included in the accuracy 

analyses.  

Iteration is not required for the TSM when Ts and Tc are known a priori. In that case Hc and 

Hs can be estimated directly using Eq. 12-18 and the latent heat fluxes computed as a residual of 

each energy balance layer (Eq. 2 and 3). This model is hereinafter referred to as TSM without 

iteration, to differentiate it from the TSM with iteration based on TR measurements. 
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MATERIAL AND METHODS 
 

Study site and field measurements 

The Balsa Blanca field site is located 6.3 km from the coast (36°56'24.17"N; 2°1'59.55"W; 

elevation 196m a.m.s.l.) in Cabo de Gata National Park. The site is a tussock grassland, where 

the predominant species is the Stipa tenacissima L. (57.2%), a perennial grass, with other less 

abundant shrub species, such as Thymus hyemalis Lange (1.7%), Chamaerops humilis L. (1.6%), 

Brachypodium retusum (Pers.) P. Beauv (1.4%), Ulex parviflorus Pourr (0.5%) and Phlomis 

purpurea L. (0.2%). Because the vegetation is perennial, measured values of cover fraction (fc = 

0.6) and canopy height (hc = 0.7 m) can be considered constant during the study period. The 

model was tested from January 15th, (day of year - DOY 15) to June 9th (DOY 160) 2011. This 

period covers the wide range of soil water availability and phenological conditions shown in 

Figure 2. During the study period, the volumetric soil moisture content, measured at a depth of 

0.04 m in a bare soil area with a water content reflectometer (model CS616, Campbell scientific 

INC., USA), ranged from a minimum of 7 to a maximum of 24%, which covered the range of 

annual variation. The evaporative fraction, defined as the ratio of latent heat flux (LE) to 

available energy (Rn-G), ranged from 0.07 to 0.49 (at midday) (notice that the evaporative 

fraction never exceeded 0.5) and LAI from MODIS ranged from 0.3 to 0.7.  
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Figure 2. Variation in leaf area index (LAI) from MODIS over time, soil water 
content at midday (SWC) and daily maximum air temperatures (Ta max) (top) and 
variation in daytime averages of observed net radiation (Rn), soil heat flux (G), 
sensible heat flux (H) and latent heat flux (LE) (bottom panel) during the study 
period.  

 

Continuous TR and Ts measurements were acquired using Apogee IRTS-P broadband 

thermal infrared thermometers (Campbell Scientific Inc., USA). This broadband radiometer has 

a full wavelength range of 6 to 14 µm. Two IRT sensors were installed at heights of 3.5 m and 

0.65 m, measuring two target surfaces at nadir, respectively: a) composite soil-vegetation surface 

and b) a pure bare soil surface (Fig. 3). The half field of view of 28º resulted in a soil and 

vegetation mixture (TR) sampling area 3.70 m in diameter and a bare soil (Ts) sampling area 

0.69m in diameter. Incoming short-wave radiation was also measured at a height of 3.5m using 

an LP02 Pyranometer (Campbell Scientific Inc., USA). Temperatures and radiance were 
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measured every minute and stored as 15-min averages on a Campbell CR1000 datalogger 

(Campbell Scientific Inc., USA).  

 

 Balsa Blanca site

Almería (Spain)
A

B C

Balsa Blanca site

Almería (Spain)
A

B C

 

Figure 3. Field site pictures, in A unstable (red ) and stable (blue) footprints of EC tower are marked in 
red and blue respectively, in B experimental assembly of IRTS-P sensors for TR and Ts measurements and 
in C detail of bare soil temperature measurements. 

 

Temperature and radiance measurements were acquired within the 100-m fetch of the Eddy 

Covariance (EC) tower located at this field site (Rey et al. 2011). The EC system for H and LE 

measurement included a three-dimensional sonic anemometer CSAT3 (Campbell Scientific Ltd, 

USA) measuring wind speed and direction, and a Li-Cor open-path infrared gas analyzer 

(Li7500, Campbell Scientific Ltd, USA) measuring water vapor and CO2 concentrations. Both 

EC system components, located 3.5 m high and connected to the Campbell CR3000 datalogger 

(Campbell Scientific Ltd, USA), measured at 10 Hz, and the datalogger calculated and stored 

means, variances and covariances every 15 min. LE measurements were corrected for air density 

fluctuations from heat and water vapor flux as proposed by Webb et al. (1980), and for the 
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rotation of the coordinate system (Kowalski et al. 1997; McMillen 1988). Air temperature (Ta) 

and humidity (RH) were also measured every minute using a thermo-hygrometer (HMP45C, 

Campbell Scientific Ltd.) located at a height of 2.5 m (z) on the EC tower. Net radiation (Rn) 

was measured every minute at a height of 1.90 m over a mixture of canopy and soil surface using 

a net radiometer (NR-Lite; Kipp & Zonen, Campbell Scientific Ltd, USA). Rn, RH and Ta 15-

min-averages were recorded by the same Campbell CR3000 datalogger used for the EC system 

data. 

In addition, the soil heat flux (G) was calculated by the combined method (Fuchs 1986; 

Massman 1992) by adding the average flux measured by a soil heat flux plate at a fixed depth (in 

this case 0.08 m) (HFT-3; REBS, Seattle,Wa, USA) to the energy stored in the soil layer above 

the heat flux plate measured using two thermocouples (TCAV, Campbell Scientific Ltd.) buried 

at 0.02 m and 0.06 m over the flux plates. Two pairs of soil heat flux plates and their 

corresponding thermocouples were installed in bare soil and under plant positions for computing 

Gbs and Gup, respectively. Soil temperatures and fluxes were measured every minute and 15-min 

averages were recorded by a CR10X datalogger (Campbell Scientific Inc., USA). Representative 

data for G at the experimental site was computed as G = fc Gup+ (1-fc) Gbs, where fc is the 

vegetation cover fraction at the site. 

 

Satellite and airborne campaign data 

LAI and fpar from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor 

were acquired as TSM model inputs. The fpar product was used to estimate fg, included in Eq. 20, 

as the ratio between intercepted and absorbed Photosynthetic Active Radiation fIPAR/fAPAR (Fisher 

et al. 2008). MODIS data from Terra, MOD15A (Collection 5), and from the Aqua satellites, 

MYD15A2, were used. The mean of Terra and Aqua 8-day composites (1-km pixel) for each 

product was linearly interpolated between observations for daily estimates.   

To assess the variability of surface temperature (TR) within the footprint of the EC tower 

four Very High Resolution (VHR) images of 0.4 m pixel acquired from an unmanned airborne 

campaign over the site in May-18th-2009 at 7.00 h, 9:10 h, 11:38h and 14:10 h (solar time) were 

used. The Unmanned Aerial Vehicle (UAV) platform operated was a 2-m wingspan fixed wing 

platform with up to 1-hour endurance at 5.8 kg take-off weight (TOW) and 63 km/h ground 

speed (mX-SIGHT, UAV Services and Systems, Germany) operated by the Laboratory for 

Research Methods in Quantitative Remote Sensing (QuantaLab, IAS-CSIC, Spain) and adapted 
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to carry a payload consisting on a thermal camera (Berni et al. 2009; Zarco-Tejada et al. 2012). 

The UAV was controlled by an autopilot (AP04, UAV Navigation, Madrid, Spain) to follow a 

flight plan (Berni et al. 2009). 

The Miricle 307 thermal camera (Thermoteknix Systems Ltd, Cambridge, UK) was flown 

over the study sites with a 14.25 mm f1.3 lens, connected to a computer onboard the unmanned 

vehicle. The image sensor was a Focal Plane Array (FPA) based on uncooled microbolometers 

with a resolution of 640x480 pixels and a spectral response in the range of 8-12 µm, yielding a 

25µm pixel size. The camera delivered uncalibrated 14-bit digital raw images. Radiometric 

calibration was conducted in the laboratory using blackbodies under varying target and ambient 

temperatures to develop radiometric calibration algorithms. Atmospheric correction methods 

were applied to the thermal imagery based on the MODTRAN radiative transfer model to obtain 

surface temperature. Local atmospheric conditions were determined by air temperature, relative 

humidity and barometric pressure measurements at the time of flight using a portable weather 

station (Model WXT510, Vaisala, Finland). Atmospheric correction methods conducted with 

single-band thermal cameras were shown to provide successful estimation of vegetation surface 

temperature (Berni et al. 2009). Bouguet’s image calibration procedure was applied to all 

imagery acquired (Berni et al. 2009), and photogrammetric techniques were used to register the 

frame-based imagery to map coordinates. Three of the images were co-registered a posteriori to 

the image acquired at 7.00h achieving a geolocation error of 4 pixels. 

To assess the variability of LAI at the study site we used an ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer) from May-6th-2003 at 11.00 UTC. 

ASTER, on board the Terra platform along with MODIS scans a 60 km swath on the ground 

every 16 days with a swath angle of ± 2.4°. The sensor has nine reflective bands and five bands 

in the thermal infrared (TIR) region. To estimate the NDVI (15 m pixel) we used the surface 

reflectance product (2AST07; HDFEOS version 2.8), with a spatial resolution of 15 m (VNIR) 

and 30 m (SWIR) and an absolute accuracy of 4% of reflectance (Abrams and Hook 2002). 

 

Pre-processing of radiometric measurements  

The Apogee IRT-P sensors, with reported accurate of ±0.3ºC within a range of -10 to 55ºC, 

were programmed to correct for the effect of the internal sensor temperature and the thermal 

mass (Bugbee et al. 1996). To ensure that the reported accuracy of IRT sensors is maintained 

under our extreme field conditions, they were recalibrated in the laboratory with a blackbody 
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calibration source (Raytek BB4000) before their installation in the field. The two IRT sensors, 

labelled as IRTsoil and IRTcomposite, according to their position in the experimental field set up, 

were tested in a growth chamber under different combinations of black body temperatures (TBB), 

ranging from 20 to 70ºC, and air temperatures (Ta), ranging from 5 to 30ºC. Temperatures were 

measured every 15 seconds and 5-min-averages were recorded in a Campbell CR1000 

datalogger. Mean measurement errors exceeded the reported accuracy (Table 1) when target 

temperatures were over 50ºC. Given that surface temperatures higher than 50ºC have been 

described under semiarid conditions (Chehbouni et al. 2001), we corrected the IRT 

measurements following the regression line between the Apogee IRT and the blackbody 

temperatures over the whole range of temperatures tested in the laboratory calibration (see 

calibration line in Table 1). 

 

Table 1: Results of laboratory calibration of the Apogee IRT-P sensors. Mean absolute error (MAE) 
in ºC of each sensor in different scenarios: for all the temperature combinations tested (MAE) , for the 
range of temperatures reported by the manufacturer* (MAErange) and for the temperatures tested out 
of the manufacturer range (MAEout of range). Air temperature (Ta) and black body temperature (TBB) 
ranges considered for each scenario are expressed in ºC. The final calibration line applied to each 
sensor is also shown. 

GENERAL STATS Ta range TBB range IRT soil IRT composite 
MAE 5-30 20-70 0.42 0.42 
MAE range 5-30 20-50 0.26 0.31 
MAE out range 5-30 60-70 0.72 0.62 
     

Empirical calibration line   y = 1.01x - 0.03 y = 1.0x - 0.06 
*reported accuracy: ±0.3 ºC from -10 to 55ºC 

 

In addition to this calibration, emissivity and atmospheric effects were also accounted for. 

The radiance reaching the IRT radiometers, RB, is the result of two main contributions: a) the 

radiance emitted by the surface because of its temperature, and b) the portion of downwelling 

long-wave sky radiation reflected by the surface (Norman and Becker 1995): 

 

( )LRR RB εε −+= 1                                                                (21) 

 

where ε is surface emissivity, RR is the black body surface spectral radiance according to 

the surface radiometric temperature (TR), and L is the hemispheric downwelling long-wave 

radiance from the sky divided by π.  



Capítulo 1 

 32 

The IRT radiometers provide measurements as brightness temperatures (TB) related to 

brightness radiance (RB), assuming emissivity equal to 1. Therefore, in order to estimate RR, first 

RB was estimated from the IRT measurements by applying the Stefan- Boltzman equation, and 

second RR was derived from Eq. 21 for each IRT sensor using known emissivity and 

downwelling long-wave radiance. Once the radiometric radiances, RR, from the IRTsoil and 

IRTcomposite sensors had been found, the Ts and TR radiometric, or “corrected”, temperatures were 

found using the Stefan-Boltzman equation.   

For Ts emissivity corrections we considered soil emissivity, εs= 0.95, associated with bare 

soils in open and closed shrublands (Trigo et al. 2008). Although some studies have shown that 

εs can vary with soil water content fluctuation (Mira et al. 2007), a constant value was used 

because the effects of that variation are in the same range as the Apogee IRT sensor error 

(Sánchez et al. 2009). For TR emissivity corrections, the composite emissivity (εR) depends on 

the vegetation fraction cover (fc = 0.6), which was estimated as a linear combination of both soil 

and canopy emissivities, εs and εc, respectively (Sobrino et al. 2001) (Eq. 22). For εc we used εc= 

0.99, measured in the field at a similar site for S. tenacissima (Villagarcía 2000).  

 

εR= fc εc+(1- fc)εs                   (22) 

 

The downwelling long-wave radiance L was computed by means of the Stefan-Boltzmann 

equation using air temperature and atmospheric emissivity. Air temperature and vapor pressure 

were used for estimating atmospheric emissivity following Brutsaert (1982).   

Once TR and Ts were found, Tc was estimated using Eq.19. The estimated Tc is referred to 

below as derived T'c.  

 

Model validation  

Model outputs were evaluated by comparing them with the H and LE fluxes derived from 

the EC system. The energy closure of 15-min measurements in our field site is shown in Figure 

4. The slope of the linear regression between the available energy (Rn-G) and the sum of the 

surface fluxes (H+LE) was 0.8, which indicates an average imbalance of about 20%, on the same 

order as reported by Wilson et al. (2002). However, for model evaluation, the conservation of 

energy equation must be satisfied (Twine et al. 2000), especially in residual models. Therefore, 
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the residual-LE closure method (Twine et al. 2000) was implemented. This method assumes that 

most of the EC imbalance is caused by inaccuracies in LE, and solves for LE as the residual of 

the energy balance equation (assuming H is measured accurately). Our choice is based on 

previous work suggesting that this method would be the most appropriate for validating SEB-

based models using EC data (Alfieri et al. 2012; Li et al. 2005), and on studies showing that 

underestimation of LE by EC is greater than for H (Wang and Dickinson 2012).  

 

 

Figure 4. EC energy closure measurements of 15 min measured data (N = 
2991). 

 

For model evaluation, our dataset of continuous measurements during the study period was 

reduced to those 15-min daytime observations with observed Rn and LE above zero (not daytime 

condensation), and model Rns and Rnc above zero (minimum energy supply), in order to evaluate 

the TSM under the conditions it was originally designed for. These criteria left a total of 2991 

cases. 

 

Analysis of spatial heterogeneity 

Water-limited ecosystems are more vulnerable to a mismatch between tower flux and land 

surface measurements due to their heterogeneous vegetation composition (Vivoni et al. 2010). If 

the spatial heterogeneity is high, non-linear aggregation of state variables such as TR and 

vegetation cover, might increase the differences between EC data and model outputs (Ershadi et 

al. 2013). In our study, model inputs from sensors with footprints different than that of the EC 
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systems were used. As footprints can differed in up to three orders of magnitude is critical to 

perform an a priori assessment of the spatial variability of the site before running the TSM.  

The aim in this Section was twofold: i) to characterize the spatial heterogeneity of the site 

for vegetation cover and surface temperature. ii) Assess if the composite soil-vegetation surface 

temperature (TR) and LAI used as model inputs are representative of effective or the spatially-

averaged variables within the footprint of the EC tower.  

First, the EC footprint area was characterized using analyses from Were et al. (2010). They 

applied the Flux Source Area Model (FSAM) of Schmid (1994, 1997) at the site that calculates 

the dimensions of the source area of a given sensor as a function of sensor height, atmospheric 

stability and wind speed fluctuations. Were et al. (2010) considered the dimensions of the source 

area responsible for 50% of the total source weight calculated with FSAM. The footprints of the 

EC tower for unstable and stable conditions, representing 96.4% and 0.4 % of the total 

observations respectively, were defined as a circle of 28.8 m radius for unstable conditions and 

51.1 m radius for stable conditions (Were et al. 2010) (Fig. 3). 

Then, statistics for TR derived from the UAV images (mean, standard deviation and 

coefficient of variation, CV) were extracted for four different sites: Apogees footprint site 

(hereinafter Apogee-site) considered representative of the model input footprint, eddy covariance 

tower site (hereinafter EC-tower), and two EC footprints (hereinafter EC-footprint stable and 

EC-footprint unstable). The Apogee-site and the EC-tower regions were defined based on the 

error from image co-registration (1.6 m). Similarly, statistics for NDVI from the ASTER image 

were extracted for three regions: EC-footprint stable, EC-footprint unstable and MODIS-1km 

pixel (same as footprint of model input). Significant differences between mean values from the 

different regions were assessed using t-tests as NDVI and TR were normally distributed. NDVI 

was used instead of LAI as no LAI imagery was available at high resolutions. However, NDVI is 

linearly related with LAI within the range of values found at the study site (LAI<2 m) (Gamon et 

al. 1995). For assessing spatial heterogeneity of TR within the EC footprint, the TR from the UAV 

can be used as atmospheric conditions do not change within the area. The pixels (0.4 m) will 

include a mixture of soil and vegetation, and also some pixels of pure vegetation and bare soil 

due to the high spatial resolution. 
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RESULTS 
 

Analyses of spatial heterogeneity  

The heterogeneity of the footprint for TR was found to be similar for unstable and stable 

conditions with standard deviation increasing towards the warmer afternoon hours when the H 

flux increases as well (Table 2). 

 

Table 2: Spatial heterogeneity of composite soil-vegetation surface temperature (TR) within the footprint area for 
stable and unstable conditions of the Eddy Covariance tower derived from four UAV scenes of 0.4 m pixel. Mean is 
the spatially-averaged TR in the area, Std is the standard deviation, n the number of pixels in the area, and CV the 
coefficient of variation (%). 
Footprint area Area (m2) Hour (solar) Mean Std n CV (%) 

7:00 28.17 1.10 60762 3.90 
9:10 37.49 1.32 60762 3.52 
11:38 41.81 1.66 60762 3.97 

Footprint 
stable 

8203.42 

14:10 40.75 1.82 60762 4.47 
       

7.00 28.20 1.11 15852 3.94 
9:10 37.47 1.11 15852 2.96 
11:38 41.81 1.51 15852 3.61 

Footprint 
unstable 

2605.78 

14:10 40.59 1.60 15852 3.94 

 

The TR representative of the model footprint (Apogee-site) was not significantly different 

(Fig. 5) from the area-averaged TR over the footprint area under either stable or unstable 

conditions after midday. However, before noon the area-averaged TR within the footprint area 

was ~0.8ºC lower than TR at the Apogee site. This could have a small impact on modeled fluxes, 

producing H overestimates (Timmermans et al. 2007). Additionally, despite of the fact that the 

location of the IRT at the Apogee-site is distant from the tower EC-site, TR from both sites are 

not significantly different at any time of the day.  

The area-averaged NDVI within the footprint of the EC tower under unstable conditions, 

dominant at the site, was not significantly different from that within the MODIS 1km pixel (see 

Table 3) its Coefficient of Variation (CV) was three times greater. However, there is a great deal 

of published evidence showing that the relationship between surface reflectance is linear across 

the range of spatial scales of most sensors and atmospheric conditions (Moran et al. 1997). This 

suggests that using the NDVI from MODIS at 1 km pixel is equivalent to using the area-

averaged NDVI value within the footprint. 
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Table 3: Spatial heterogeneity of NDVI within the footprint (stable and unstable 
conditions) of the Eddy Covariance tower using and the MODIS 1 km pixel region 
derived from ASTER (15 m pixel). Mean is the spatially-averaged NDVI in the area, Std 
is the standard deviation and CV the coefficient of variation (%) Significant differences 
between means at p<0.05  were indicated by different letters. 

 Area (m2) Mean Std n CV (%) Significant 
differences 

Footprint stable 8203.42 0.36  0.012 36 3.4 a 
Footprint unstable 2605.78 0.36   0.013 16 3.7 ab 
MODIS-1km pixel 1000000 0.37 0.049 4434 13.2 b 
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Figure 5. Comparison of spatially-averaged TR at the IRT Apogee site, at the 
Eddy Eovariance site, and within the footprint regions defined for stable and 
unstable conditions. TR were derived from High Resolution Images from airborne 
flights at four different times on May-18th -2009. Error bars represent the 
confidence interval for significant differences (p<0.05). 

 
 
Series vs. parallel original TSM version 

No significant differences were found between TSMP and TSMS outputs using the TSM in 

our semiarid site (Fig. 6). Statistics comparing model outputs with EC derived fluxes shown in 

Table 4, have lower errors with the parallel approach, but explained variance is slightly higher 

with the series approach.  

TSMP and TSMS were equally successful in estimating Rn with slopes close to 1 and R2 = 

0.93 for all approaches (Fig. 6A and D), and low Mean Absolute Percentage Errors (MAPE) of 

12-13 % (Table 4). However, a tendency to overestimate is observed (Fig. 6A and D). 

Differences in parallel and series model versions were more significant for H than for Rn 

(Fig. 6B and E). Both resistance networks showed a better capacity for estimating low H than 

high H values, with similar accuracy when H was low. At high values of H, the TSMS showed a 
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clear tendency to underestimate, whereas TSMP behaviour was more irregular especially using 

the TSM with iteration (Fig. 6B and E). As a result, mean average errors for H were slightly 

lower with the parallel approach, with MAE values of 51- 48 W m-2 (25-23% of MAPE) using 

the TSM with or without  iteration respectively, than with the series which showed MAE values 

of 69-71Wm-2 (33-34% of MAPE) respectively. However slightly better correlation (R2 = 0.78-

080 vs. R2 = 0.75-78) and lower scatter (Fig. 6B and E) using the series approach was found. 
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Figure 6. Linear regressions between the surface energy fluxes estimated by the TSM with iteration (using TR) (in A,B and C panels) and by the TSM 
without iteration (using Ts and T’c) (in D,E and F panels) versus their corresponding ground measurements:  Rn, H, and LE for full dataset analysed (N = 
2991). In grey, TSM model with parallel resistance approach (TSMP) and in black, series resistance approach (TSMS). Dashed line is the 1:1 line.  

 



Using  radiometric temperature for surface energy fluxes estimation 

 39 

Under the semiarid conditions studied, the TSM showed large relative errors in the latent 

heat flux, LE, with MAE values of 84-115 W m-2 and MAPE in the order of 73-99% (Table 4). 

The lower errors were found using the TSMP (73-74%). Linear regressions between modelled 

and observed LE showed a larger scatter (Fig. 6C and F), with R2 below 0.40 for all approaches 

and despite of LE was mostly overestimated, slope values were close to one (Table 4), denoting 

greater importance of non-systematic rather than systematic errors.  

TSMP and TSMS tackle the partitioning of the turbulent fluxes between soil and canopy in a 

different way. Although no separate measurements of soil and canopy fluxes were available for a 

proper evaluation of this partitioning by TSMP and TSMS, the comparison of measured and 

estimated Ts (Fig. 7) showed a general tendency to overestimate Ts, especially at high 

temperatures. This tendency, denoting that the TSM would be overestimating Hs flux, was more 

pronounced with the TSMP (RMSE = 3.37 ºC) than with the TSMS (RMSE = 1.67 ºC).  

 

 

Figure 7. Comparison of soil surface temperature ground observations and 
TSM with iteration output. In grey, Ts predicted by the TSM model with 
the parallel resistance approach (TSMP) and in black, Ts predicted by the 
TSM model with the series resistance approach (TSMS) (N = 2991). The 
dashed line is the 1:1 reference line. Root Mean Squared Error (RMSE) 
was 3.27ºC and 1.67ºC for TSMP and TSMS results, respectively. 
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Table 4. Statistics comparing net Radiation (Rn), sensible heat (H) and latent heat (LE) fluxes observed and predicted by TSM using TR and the iteration procedure (left) and 
using Ts and T’c without iteration (right). Results of the TSM model with parallel (TSMP) and series resistance (TSMS) approaches are shown (N= 2991). 

   TSM with iteration (using TR)  TSM without iteration (using Ts and T'c) 

 <O> 
 

 <P> RMSEa  MAEb  MAPEc  R2 slope   <P> RMSEa  MAE b  MAPEc  R2 slope Flux 
Resistance  
approach 

W m-2  W m-2 W m-2 W m-2 % -  -   W m-2 W m-2 W m-2 % -  -  

TSMP  412 58 46 12 0.93 0.95  Rn 
TSMS 

375 
 416 61 48 13 0.93 0.95  

418 62 49 13 0.93 0.95 

                 

TSMP  176 64 51 25 0.75 0.72  176 64 48 23 0.77 0.66 
H 

TSMS 
209 

 146 84 69 33 0.78 0.61  142 87 71 34 0.80 0.60 
                 

TSMP  185 105 86 74 0.36 0.90  192 105 84 73 0.39 0.86 
LE 

TSMS 
115  220 130 110 95 0.39 0.94  227 135 115 99 0.38 0.90 

a <O> is the observed average  
b <P> is the predicted average  

c Mean absolute error ( )∑ =
−= n

i ii nOPMAE
1

/  

d Root mean square error    ( )[ ] 2/1

1

2 /)(∑ =
−= n

i ii nOPRMSE  

e Mean absolute percentage error  ( )∑ =
−

><
= n

i ii nOP
O

MAPE
1

/
100   , where Pi is the model prediction, and Oi is the observation 
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Evaluating the iteration procedure included in the original TSM  

No significant changes in the scatterplots were found between the TSM with iteration (Fig. 

6A-C) and the TSM without iteration (Fig. 6D-F), and statistics were similar (Table 4).   

Nonetheless, some minor differences in H estimates depending on the model version (with 

or without iteration) are detected (Fig. 6B and E). These differences were more obvious with the 

TSMP approach, which increased in bias when Ts and T'c were used (slope = 0.66 vs. slope = 

0.72) despite of a slight increase of explained variance (R2 = 0.77 vs. R2 = 0.75) and decrease of 

percentage errors (MAPE = 23% vs. MAPE = 25%) compared to the TSMP using iteration. The 

TSMS presented a very similar behaviour using iteration or not, showing the same tendency to 

underestimate high values of H as well as similar correlations (R2 = 0.80 vs. R2= 0.78), slopes 

(0.60 and 0.61 respectively) and overall errors (MAPE = 34% and MAPE = 33%). These 

differences on estimation of H using Ts and T'c did not significantly affected estimates of LE. The 

scatter plots continued to show wide dispersion for both TSMP and TSMS (Fig. 6C and F) and 

only the slopes were reduced from 0.90 to 0.86, using TSMP, and from 0.94 to 0.90, using TSMS, 

when iteration was not used (see Table 4). 

In view of these results (Fig. 6 and Table 4), no strong differences between TSM 

performance using Ts and T'c or TR and iteration can be confirmed under natural semiarid 

conditions. Nonetheless, it is important to consider that the iterative procedure failed in a certain 

number of cases, not included or discussed in previous analyses. Iteration was not able to achieve 

energy closure for soil layer using measured G values for those failed cases (see Model 

Description Section). These iteration failures were more common using TSMP, N = 668, than 

TSMS, N = 292. In those cases when iteration failed, the TSM worked properly using observed Ts 

and T’c. In Figure 8, predicted fluxes from the TSM with iteration and without iteration can be 

compared for only such cases. When the iteration procedure failed both in series and in parallel, 

TSMP and TSMS, iteration clearly overestimated H (predicted LE was always zero). However, 

without iteration, H was estimated better and was in good agreement, close to the 1:1 line. The 

iteration failed when using TSMS mostly with low energy supply (Rn<300 W m-2), whereas 

TSMP iteration failed under a wider range of energy supply conditions (Rn between 0 - 600 W m-

2).  
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Figure 8. Linear regressions of estimated surface fluxes by TSMP (left) and TSMS (right) using measured Ts and derived T’c without iteration (in black) and using TR and with 
iteration (in grey) over their corresponding ground measurements: a) Rn, b) G, c) H, d) LE for those observations when iteration failed using TSMP (N = 668) or using TSMS (N = 
292). Dashed line is the1:1 line. 
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DISCUSSION 
 

Accuracy of the TSM for surface flux estimation under Mediterranean semiarid conditions  

Accurate estimation of surface fluxes in semiarid and sparsely vegetated areas is a 

particularly challenging task, more so when the latent heat flux is very low  due to the strong 

water limitations (Fig. 2), such as in Mediterranean drylands (Domingo et al. 2011). Our results 

showed that under these conditions, the TSM of Norman et al. (1995) was accurate for 

estimating Rn and H fluxes, but not for LE even using measured G to reduce uncertainties 

affecting residually estimated LE. 

Agreement between Rn ground observations and TSM model estimates was similar for the 

four TSM versions tested (parallel and series; with and without iteration) with overestimates 

showing a mean absolute percentage error (MAPE) of 12-13% (Table 4). This level of accuracy 

is satisfactory considering that only field measurements of incoming irradiance were used, and 

that the uncertainty of field measurements of Rn is from 5 to 10% (Kustas and Norman 1996). 

Similar level of accuracy has been reported by others authors (13%) in semiarid cotton croplands 

(Colaizzi et al. 2012c) who included specific modifications for radiation modelling in row crops 

(Colaizzi et al. 2012b) and in semiarid shrublands using ASTER reflectance for clear-sky 

conditions with errors below 8% (Garcia et al. 2008).  

H estimated accuracy ranged from 23 to 34% depending on the model version (Table 4). 

This error is not unreasonable, bearing in mind the mismatch between the footprint of the 

infrared radiometers and the flux measurement area, with a spatial heterogeneity within the 

footprint area in TR and vegetation greenness around 4% for both variables. Despite of that, it is 

remarkable that the error in H is not significantly higher than the 10% to 30% uncertainty 

affecting turbulent flux measurement by Eddy Covariance (Twine et al. 2000) which happens to 

be 20% in our study site (Fig. 4). This level of accuracy in H is similar to that found by Li et al. 

(2005), who applied the TSM in soy and corn croplands under different vegetation cover and 

water availability conditions, with mean relative errors of from 34 to 38%. Our errors were 

slightly higher than the range of errors reported by previous authors in a semiarid rangeland in 

Arizona (19-24%) (Norman et al. 1995; Timmermans et al. 2007; Zhan et al. 1996). However, it 

is important to highlight that some of these studies tested the TSM under semiarid conditions 

only during the wet season (Zhan et al. 1996), or using data only for short periods (3 days) 

(Timmermans et al. 2007). The reported tendency of the TSM to underestimate for high H at our 

field site (Fig. 6B and E) was observed at times when H was higher than LE, which was also 



Capítulo 1 

 44 

reported by Zhan et al. (1996) for H over 300 W m-2. We observed this TSM behaviour both 

with and without iteration (known Ts and T’c). This shows that the tendency to underestimate is 

not related to limitations in the iteration approach, but could be interpreted as an indicator of an 

overall limitation of the TSM when H is the dominant flux and also an effect to compensate for 

the overestimates in Rn. It is also likely that when H is the dominant flux and conditions become 

warmer, the surface heterogeneity within the footprint increases as was shown in Table 2, using a 

diurnal UAV campaign, increasing the likelihood of a mismatch between surface fluxes 

measured by the EC system and estimated by the TSM model (Vivoni et al. 2010). 

The TSM showed a high MAE in LE of 84Wm-2 (73%) to 115 W m-2 (99%), and low 

linear agreement with R2 always below 0.4 (see Fig. 6C and F). French et al. (2003) also found 

higher errors in LE estimates using the TSM in bare soils and patchy pasture lands (53% and 

30% of relative error MAPE, respectively) than in more uniform pastures (10-16%). Agam et al. 

(2010) also reported high MAE of around 65 W m-2 in LE estimates under natural semiarid 

conditions with high vapor pressure deficit and low LAI using an initial αPT of 1.3. They 

suggested that the reduction of the initial value of αPT used in the iteration could be consider as a 

possible solution to reduce LE errors in the TSM under such conditions. However, our results 

show that similar errors affecting LE were found using the TSM without iteration with no 

Priestley-Taylor assumption. This points out that other factors different to those related with the 

iteration should be causing the TSM derived LE errors. Modelling LE at Mediterranean water-

stressed sites like ours, where 15- min LE observations are within the range of EC closure errors 

during several days is challenging. As the TSM estimates LE as a residual of the energy balance 

equation, biases from H, Rn and G might accumulate in the LE estimates and higher non-

systematic errors could be expected (Kalma et al. 2008). In the present work measurements of G 

flux were here used to reduce uncertainties affecting LE, because modelled G from Eq. 7, even 

using a site calibrated cg value (cg = 0.16), resulted in considerable errors (R2=0.52 and MAPE of 

30%, results not shown). Even though, the effect of a slight overestimation of Rn and 

underestimation of H strongly affected LE predictions which were hence overestimated in our 

semiarid site. Furthermore, a residual-LE closure was used for validation following the 

conclusions of previous authors (see Material and Methods Section, Model Validation 

Subsection). Therefore, uncertainty of observed LE on one hand and errors in estimating Rn and 

H on the other could explain the wide scatter in the LE scatterplots (Fig. 6C and F). Other 

models tested to estimate daily LE at the same field site also provide low correlations: R2 of 0.33 
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to 0.49 using a Penman-Monteith model (Capítulo 3) and R2 = 0.57 using a Priestley-Taylor 

mod.  

 

Practical aspects for use of the TSM in Mediterranean drylands 

Even though the parallel resistances version of the TSM (TSMP) was originally 

recommended for sparsely vegetated semiarid regions and the series resistances version (TSMS) 

for more densely vegetated regions (Kustas and Norman 1999b; Norman et al. 1995), results of 

testing both versions under a variety of conditions have been ambivalent (Kustas and Norman 

1997, 1999a; Li et al. 2005; Zhan et al. 1996). Therefore, there is not yet a general agreement on 

which TSM version should be selected in each case. In this paper, the two resistance approaches 

to estimate surface energy fluxes under natural semiarid Mediterranean conditions were 

compared, and in agreement with Li et al. (2005) and Zhan et al. (1996), no strong differences 

were found between fluxes from the two approaches. However, the overall errors for H and LE 

fluxes were slightly lower (~10% and ~20% respectively) with the parallel resistance approach 

than the series (Table 4) for the TSM with and without iteration. Some differences between the 

series and parallel approaches were only noticeable with TSM with iteration (Fig. 6B and E). In 

this case, the series approach showed a stronger tendency to underestimate H, whereas the 

parallel schemes sometimes also overestimated H, showing a better general tendency (slope = 

0.61 vs. slope= 0.72), but slightly lower explained variance than the series approach (R2 = 0.75 

vs. R2 = 0.78) (Table 4 and Fig. 6). Underestimates of H have also been found in agricultural 

areas toward the end of the wet season using the series version of the TSM when non-transpiring 

plant components or senescent leaves increased (Colaizzi et al. 2012a; French et al. 2007). 

Limitations affecting the design of the TSMS for partitioning of soil-canopy fluxes based on the 

Priestley-Taylor assumption under high senescent vegetation conditions were suggested by these 

authors as possible explanation. Considering that accumulation of senescent leaves in the canopy 

is a typical characteristic of perennial grasslands like our field site, in the present study we 

accounted for the variation of the green canopy fraction (fG) and the reduction of αPT was 

allowed in the iterative procedure (see Model Description Section). However systematic 

underestimation of H flux from TSMs was still observed at high observed H rates, when 

senescent components are expected to be higher, and similar tendency was also observed using 

the TSMS run without iteration. Colaizzi et al. (2012c) also obtained overestimates of 

evapotranspiration, which should be derived from underestimates of H, for both TSM versions 

with or without iteration when canopy contained non transpiring elements. They used an 
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alternative to the Priestley-Taylor equation based on Penman-Monteith and despite of the fact 

that uncertainties were reduced, overestimates in LE were still found. They attributed those 

errors to downward bias in measurements of TR and Tc with field infrared thermometers viewing 

a greater proportion of the top and greener part of the canopy colder than the whole canopy 

contained a higher proportion of non transpiring elements. In our study similar errors could be 

affecting producing TR underestimates and possible upward bias of Ts, as it is measured in an 

area slightly less shaded than the portion of bare soil area in the footprint area of TR.  

However, overestimates of H using TSMP and iteration are related to the thermal gradient 

considered in the parallel resistance approach (driven by Ts-Ta and Tc-Ta), which is higher than 

with series resistance (driven by Ts-Tac and Tc-Tac). This higher thermal gradient in the parallel 

approach results in more frequent overestimation of H (Fig. 6B) and in some LE = 0 predictions, 

despite observed LE being of almost 150 W m-2. Predicted LE = 0 were also found by Kustas and 

Norman (1997), who attributed them to outliers in H retrievals. In this regard, the series 

approach, due to the moderating effect of the air temperature in the canopy interface (Tac), was 

more effective in limiting an unrealistic rise in Ts, and thereby, possible overestimates of Hs (see 

detailed analysis in Li et al. 2005). In our study, the series resistance was also more robust than 

the parallel resistance, regardless of whether the model was run with iteration or without (Fig. 6B 

and E). This agrees with previous analyses, in which it has been claimed that TSMS is more 

robust, and that it can therefore be applied to a wider range of environmental conditions (Kustas 

and Norman 1999a; Li et al. 2005). 

The comparison of Ts estimated from iteration and observed can also provide some insights 

into the accuracy of turbulent soil and canopy flux partitioning by the two resistance approaches. 

Partitioning seems to have been adequate with both TSM approaches when soil temperatures 

were below 30ºC (Fig. 7), but turned out to be more problematic at higher Ts conditions, with 

both resistance schemes showing a tendency to overestimate Ts, and presumably Hs, with the 

TSMS presenting better fit and a lower Ts bias. This seems to indicate that the series approach 

allowed more accurate partitioning of turbulent fluxes in our semiarid Mediterranean conditions, 

which might also be indicated by a higher R2 than for the parallel version. Compared to other 

studies, the overall errors for Ts estimation with iteration at our site (3.37ºC and 1.67ºC RMSE 

for TSMP and TSMS, respectively) were lower than in previous studies on soybean and corn crops 

(RMSE~ 4ºC) (Li et al. 2005) although in those cases Ts came from the TSM run using TR from 

satellite remote sensing images. 
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Minor differences between TSM performance with and without iteration were found in our 

field site when the iteration worked properly. Those differences were more noticeable using 

TSMP than TSMS, which could indicate weaker effectiveness of iteration for flux partitioning 

with the parallel resistance approach. More noticeable differences between observed and 

predicted LE from the original TSM and the simplified TSM version using measured Ts and Tc, 

(~10% of difference on MAPE), were shown by Colaizzi et al. (2012c) using the series 

resistance scheme in a irrigated cotton crop area. However, several differences between the their 

work and ours regarding water availability (dryland vs. irrigated cropland), ecosystem type 

(grassland vs. cotton cropland), methodology used to measure Ts and Tc and model design 

(Priestley-Taylor assumption vs. Penman Monteith assumption for the initial estimation of Tc) 

make it difficult to discern the reason behind different model performance.   

Finally, in evaluating the iteration procedure proposed by Norman et al. (1995), it is also 

important to consider failed iteration in a certain number of cases in which the TSM was 

accurate using Ts and T’c (Fig. 8). This iteration failures could be related with the unsuitability of 

αPT =1.3 used to initialize the iteration in natural semiarid areas (Agam et al. 2010). The 

unreliability of this value could cause overestimates of initial LEc resulting in LEs = 0 and 

overestimates of Hs from the overall energy balance which will force the iteration to reduce G 

flux to unreliable values (G<<0) (Fig. 8). The fact that iteration failed more often using TSMP 

and in a wider range of energy supply conditions (0 < Rn < 600 W m-2) than TSMS (mostly Rn < 

300 W m-2) can also be attributed to the moderating effect of the air temperature in the canopy 

interface (Tac) using TSMS reducing Hs overestimations.  
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CONCLUSIONS 
 

Our analysis using aggregated soil-vegetation radiometric temperatures showed that the 

TSM can be applied operationally, producing reliable estimates of sensible heat flux, H, and net 

radiation, Rn, fluxes with error levels of ~30% and ~10% respectively, under the wide range of 

environmental conditions typical of Mediterranean semiarid perennial grasslands. However, 

latent heat flux, LE, estimates were not accurate and errors ranged from 73 to 99%. The residual 

estimation of LE in the TSM has also been shown to be problematic in areas where the 

magnitude of the LE flux is as low (average daytime LE of 70 W m-2) as in our Mediterranean 

field site. Under these conditions, inaccuracies associated with Rn and H fluxes from the TSM, 

especially the latter, showed a strong impact on LE estimates. Reduction of uncertainties of 

temperature measurements should be addressed in order to reduce errors affecting H flux and 

improve LE estimates from the TSM under semiarid natural conditions. Methods with a lower 

sensitivity of surface temperature uncertainties as the Dual-Temperature-Difference (DTD) 

method (Kustas et al. 2012) can also be a promising alternative which will be compared in future 

works with the TSM.  

The choice of parallel or series resistance for the TSM was revealed to be unimportant for 

the overall TSM performance in semiarid areas, as no significant differences between model 

approaches were found at our field site, nor at other natural semiarid areas tested. However, 

despite having slightly lower errors in H (~10%) and LE (~20%) estimates when using the 

parallel approach, there is some evidence of better suitability of series resistance. It seems that 

the effect of considering air temperature in the canopy interface with the series approach was 

appreciably better than with the parallel approach for separating total fluxes into canopy and soil, 

and also reduced the number of cases of algorithm failure. Nonetheless, in order to establish the 

best resistance approach for accurate partitioning of total turbulent fluxes under semiarid 

Mediterranean conditions, comparisons with soil and canopy fluxes measured separately must be 

evaluated. Regarding the effect of using a composite soil-vegetation temperature with iteration or 

separate canopy and soil temperatures directly, our H estimates presented lower the scatter 

without iteration under the parallel approach (R2 = 0.77 vs. R2 = 0.74) and a 2% of reduction in 

MAPE, while in the series approach the results where more robust as they did not change 

significantly with or without iteration. These results show the robustness of the iteration 

procedure, especially under the series scheme, to disaggregate composite a soil-vegetation 

temperature into its separate soil and vegetation components in semiarid grasslands providing 

good prospects for up-scaling using mono-angle remote sensing data. 
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ABSTRACT 
 

The temperature-based Two-Source Model (TSM) of Norman et al. (1995) has not been 

properly evaluated under the water stress conditions typical of natural Mediterranean drylands. 

In such areas, the asynchrony between precipitation and energy supply, strongly reduces 

evapotranspiration E (or latent heat flux if expressed in energy terms,) making sensible heat flux 

(H) the dominant turbulent heat flux. We present a detailed analysis of the main environmental 

factors affecting the TSM effectiveness under such challenging conditions. The accuracy of the 

TSM, evaluated via errors in 15-min H estimates, was proved to have a diurnal variation. 

Accuracy was clearly reduced for solar elevation angles lower than 25º and during marginal 

hours of daytime, before 10 am and after 3 pm. The surface to air temperature difference, (TR-

Ta) and the wind speed were the two environmental factors showing the strongest effect on the 

TSM accuracy. In contrast with results observed in other ecosystems, in a Mediterranean tussock 

grassland the TSM accuracy was not clearly reduced by cloudiness and it was improved under 

higher water stress and stressed vegetation conditions. The parallel resistances scheme of the 

TSM (TSMP) showed overall lower errors and a lower tendency to underestimate at high H 

values but the TSMS reduced model errors under some specific conditions such low energy 

supply conditions and atmospheric neutral conditions.  

Two extrapolation methods to obtain daytime turbulent fluxes from 15-min estimates from the 

TSM were compared: i) averaging the total daytime instantaneous fluxes derived from the TSM 

(Averaging method) and ii) assuming the constancy of midday values of the evaporative and the 

non evaporative fraction derived from TSM along the daytime period (EF or NEF method). 

Daytime estimates of H, and E were more accurate using the Averaging method than with the EF 

or NEF method. Moreover, daytime estimates of H and E were better when using instantaneous 

fluxes from the TSMP than from the TSMS. Thus, reliable daytime estimates of H were obtained 

from the TSMP in a Mediterranean dryland, with mean errors of 20% and high correlations 

(R2=0.85). However, daytime E was strongly overestimated (125%) using the TSM although a 

good correlation with eddy covariance measurements was found (R2=0.84).  

 

 
Keywords: turbulent heat fluxes, temperature-based two source model, model effectiveness, 
diurnal behavior, time extrapolation methods, Mediterranean dryland.  
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INTRODUCTION 
 

A two-source energy balance model was proposed by Norman et al. (1995) for modelling 

the surface energy fluxes over sparse vegetated areas consisting of a more realistic and 

physically sound design than one-source models (OSM) (French et al. 2005; Timmermans et al. 

2007). This model, known as the TSM, considers the surface to air temperature gradient as the 

key driver of the turbulent fluxes coming from soil and vegetation surfaces. The TSM, under a 

multilayer perspective, models the land surface as a resistance network between energy sources 

from soil, vegetation and the overlying atmosphere (French et al. 2005). Depending on the 

coupling assumed between temperatures of canopy and soil, the resistance network of the TSM 

can be considered in series (TSMS), when interaction between canopy and soil temperatures is 

assumed or, in parallel (TSMP) assuming no thermal interaction exist between both layers 

(Kustas and Norman 1999b). To account for the partitioning of turbulent fluxes between soil and 

canopy layers by the TSM, radiometric temperatures from soil (Ts) and canopy (Tc) are 

necessary. However, the spatial resolution of most of the surface temperature (TR) data provided 

by remote sensing is commonly too coarse to distinguish between them. The TSM faces this 

issue applying an iterative procedure based on two main assumptions  First a simple linear 

contribution of the soil and canopy emitted radiances, proportional to vegetation cover, to the 

remotely sensed radiance measured by the temperature sensor is assumed (see Capítulo 1). The 

second assumption considers an initial canopy latent heat flux (LEc) responding to a potential 

rate estimated by the Priestley-Taylor equation (Priestley and Taylor 1972). This initial LEc 

value is iteratively overridden until the surface energy balance equation on both soil and canopy 

layers is met. Thus, the TSM retrieves H and LE estimates of soil and canopy layers using single 

measurements of TR, meteorological variables (air temperature, vapor pressure deficit, wind 

speed, and solar irradiance) and ancillary information about the vegetation (leaf area index, 

vegetation height and cover fraction) (Colaizzi et al. 2012b). A detailed description of the TSM 

formulation can be found in Capítulo 1. 

Many studies have tested the utility of the TSM and subsequent improvements over a 

broad range of vegetation cover and climate conditions (see a summary in Wang and Dickinson 

2012). Nonetheless, the TSM model has been particularly recommended for clear sky conditions, 

high thermal difference between soil and canopy (Wang and Dickinson 2012) and no presence of 

senescent vegetation (Colaizzi et al. 2012a; Norman et al. 1995). Kustas and Anderson (2009) 

evaluated the TSM performance (in comparison with OSM) under extreme scenarios simulated 

by the Cupid model, a complex soil-vegetation-atmosphere transfer (SVAT) model, and they did 
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not found special limitations for their water stressed vegetation scenario. However, model 

performance has not been properly in-situ evaluated under strong water limited conditions where 

H represents a significantly greater proportion of the available energy as it occurs in 

Mediterranean drylands (García et al. 2007). In Capítulo 1 the TSM behaviour under the natural 

water-limited conditions characterizing Mediterranean drylands was presented during an 

extensive time period (5 months including the growing season) for the first time in studies of 

TSM. Those results showed that the TSM produces reliable estimates of the dominant turbulent 

flux H, with errors around 30%, despite of the fact that significant variability was still found (R2 

= 0.75-0.78). However, poor accuracy was found for the LE flux with errors up to ~90%. These 

results highlighted the need of clarifying under which environmental conditions the TSM 

effectiveness is reduced in natural arid and semiarid areas. This is a prior step before further 

model development and improvement in natural arid and semiarid ecosystems can be 

undertaken.  

The TSM was originally designed to estimate the surface energy fluxes using instantaneous 

surface temperature retrievals from remote sensing sensors (Norman et al. 1995). The model is 

designed to be applied during daytime conditions and is based on parameterizations optimized 

for a period encompassing few hours around solar noon (Kustas and Anderson 2009). Even 

though, when continuous TR measurements have been available, the TSM has been applied for 

the complete daytime period (Colaizzi et al. 2012b; Norman et al. 2000; Sánchez et al. 2008). 

Nonetheless, the diurnal behaviour of the TSM has not been discussed yet, despite of the fact 

that other temperature-based models have shown weakness during marginal hours of daytime 

period (Su 2002). This has important practical implications for potential users of the TSM, 

especially when data from sun synchronous satellites, limited to the time of the satellite 

overpass, are going to be used for model running. 

The majority of studies in relation to the TSM have analyzed model accuracy just for 

instantaneous fluxes. However, daily or daytime estimates of turbulent fluxes are required for 

water resources monitoring and ecological management purposes (Glenn et al. 2007; Kalma et 

al. 2008). Some papers have shown acceptable results when estimating daily E using the TSM in 

irrigated agricultural areas (Colaizzi et al. 2012a; Colaizzi et al. 2012b; French et al. 2007; 

Gonzalez-Dugo et al. 2009). Nevertheless, no references exist in the bibliography about the 

possibilities to obtain daytime turbulent fluxes using the TSM in Mediterranean semiarid natural 

areas where it is expected a reduced daily LE and increased daytime H fluxes (Domingo et al. 

2011).  
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The objective of this work is to clarify some of the issues previously described regarding 

TSM performance under Mediterranean natural semiarid conditions. Specifically, three  issues 

have been evaluated in the present work: i) the diurnal behaviour of the TSM to estimate the 

dominant H flux, ii) the main environmental factors affecting model accuracy for estimating the 

H flux in semiarid areas and iii) the capacity of the TSM to obtain daytime values of H and E at 

Mediterranean semiarid sites. To perform these analyses we used a dataset including in-situ flux 

measurements and 15 minute TSM model outputs from both series and parallel schemes of 

surface energy fluxes (Capítulo 1). The analysis performed here should provide new insights on 

the effectiveness and sensitivity of the two resistance schemes of the TSM under a wide range of 

environmental conditions and set the basis for estimating diurnal surface fluxes from 

instantaneous estimates from satellite images in Mediterranean semiarid grasslands. 

 

EXPERIMENTAL DATASET AND FIELD SITE MEASUREMENTS  
 

This study was performed in a Mediterranean semiarid field site called Balsa Blanca 

located in southeast Spain (36°56'24.17"N; 2°1'59.55"O). The vegetation of the site is sparse and 

it is dominated by the perennial tussock grass Stipa tenacissima (L.) showing a cover fraction 

(fc) estimated on the field of 0.6. The climate is Mediterranean semiarid with a mean annual 

rainfall of 200 mm and a mean annual temperature of 18ºC. More detailed information about the 

site can be found in Rey et al. (2012). 

This field site was equipped with an Eddy Covariance (EC) system located at 3.5 m height 

for measuring H and LE fluxes from an homogeneous and representative area at 10 Hz frequency 

(further details in Capítulo 1). Averaged values of H and LE every 15 min were recorded in a 

datalogger (Campbell Scientific Inc., USA) and considered here as instantaneous fluxes. In order 

to assure the energy closure of our EC derived measurements, which presented an imbalance of 

~20%, the residual-LE closure method was applied (Twine et al. 2000) as previous authors 

suggested (Alfieri et al. 2012; Li et al. 2005) 

Measurements of surface temperature (TR) for model running and additional measurements 

of bare soil temperature (Ts) were acquired within the 100m fetch of the EC tower using 

broadband thermal infrared thermometers, Apogee IRTS-P (Campbell Scientific Inc., USA). TR 

was measured with a sensor placed at 3.5m height observing the ground at nadir over a sampling 

area of 3.70 m in diameter, which is a representative mixture of soil and vegetation. Ts was on 

the other hand measured at 0.65m height over a sampling bare soil area of 0.69 m in diameter. 
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Incoming short-wave radiation (S) was also measured at 3.5 m height using a LP02 Pyranometer 

(Campbell Scientific Inc.,USA). Temperatures and radiances were measured every minute and 

stored as 15-min averages in a datalogger (Campbell Scientific Inc.,USA). Brightness 

temperatures sensed by the IRT-P sensors were transformed into radiometric temperatures (see 

Norman and Becker 1995 for terminology clarification) by correction of emissivity and 

atmospheric effects (details of temperature pre-processing can be found in Capítulo 1). Air 

temperature (Ta) and relative humidity of the air (HR) were also measured at 2.5 m every minute 

with a thermo-hygrometer (HMP45C, Campbell Scientific Inc.,USA) and 15- min averages were 

also stored. Leaf area index (LAI) was acquired from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard the Terra and Aqua satellites with 1-km pixel resolution 

(see more details in Capítulo 1). Additionally, the Soil Water Content (SWC) was measured from 

a water content reflectometer (model CS616, Campbell Scientific INC., USA) located at 0.04 m 

depth in bare soil. SWC was used in present work to characterize water availability conditions.  

Soil profile temperature was measured with two thermocouples (TCAV) at 0.02 and 0.06 depth, 

which they were later used to correct soil temperature variations on SWC measurements by 

applying the calibration standard quadratic equation detailed by the manufacturer (Campbell 

Scientific INC., USA).  

In order to accomplish the objectives of this work we used a complete dataset including 

15-min measurements (EC derived) and predictions of the H and LE fluxes derived from the 

original TSM presented by Norman et al. (1995) and including the latest improvements proposed 

by Kustas and Norman (1999a). The detailed description of the main equations can be found in 

Capítulo 1. Predictions of H and LE from the two possible resistance arrangements of the TSM, 

parallel (TSMP) and series (TSMS), were included. The study time period was from January 15th 

(day of year - DOY 15) to June 9th (DOY 160) 2011, covering a wide range of environmental 

conditions (see observed ranges in Table 2). The dataset evaluated included those observations 

for which H and LE estimates were obtained from the TSM with a correct behaviour of the 

iterative procedure (N= 2991) (see more details in Capítulo 1).  
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METHODS 

 

Analyzing the diurnal behaviour of the TSM  

To study the diurnal behaviour of the TSM, we have assessed the relationship between the 

accuracy of the instantaneous H estimates and the two main factors related with solar energy 

supply that change during the daytime period: the time of the day and the solar elevation angle, 

reflecting a seasonal component. The time of day is the most common factor considered in 

evaluations of the diurnal behaviour of models because of its implications when using sun-

synchronous satellite data, usually reduced to one daily acquisition, for model running. However, 

the solar energy supply, the main factor controlling the surface energy fluxes, is mainly driven 

by the solar elevation angle. For instance, incoming solar radiation at one specific time of day 

clearly differs between wintertime and summertime due to a higher solar elevation angle in 

summer. Consequently, the accuracy of the TSM can be expected to change depending on these 

two factors, time of the day and solar elevation along the year.  

In order to analyze the effect that these two non-independent factors have over the TSM 

accuracy, a sequential analysis was performed. First, we evaluated the evolution of the TSM 

accuracy under a linear gradient of observed solar elevation angles (SE) (see ranges of SE in 

Table 1) using the entire 15-min dataset (N=2991). By doing so we established the minimum 

solar angle conditions necessary for the TSM to success along the year. Secondly, the evolution 

of the TSM accuracy during daytime hours was analyzed hour by hour between 7 am to 4 pm by 

using a data subset in which those solar elevation conditions with reduced the TSM accuracy 

based on the previous analysis were removed (N=2667). In this way, this second analysis will 

show only the effects due to time of the day regardless of the solar elevation effects. From this 

sequential analysis the range of minimum solar elevation angle and time of day under which a 

robust behaviour of the TSM can be found in our semiarid conditions along the year will be 

determined. 

The TSM accuracy was quantified using the Mean Absolute Percentage Error (MAPE) 

and the coefficient of determination (R2), between observed and TSM predicted H. The 

coefficient of determination (R2) was selected as an indicator of the proportion of variance 

explained by the model. MAPE was computed by Eq. 1 where Oi and Pi represent observed and 

predicted values respectively. This statistic normalizes the absolute error to the magnitude of the 

observed flux, making it possible to compare model accuracy under conditions in which the 

magnitude of the modelled flux can strongly differ as it happens along the day.  



Capítulo 2 

 62 

( )∑ =
−= n

i iii OOP
n

MAPE
1

/
100

                                   (1) 

 

Additionally, to determine the ranges of SE and Time of day for which the accuracy of the 

model differed significantly (p-value < 0.05) Tukey HSD tests were performed (Sokal and Rohlf 

2012).   

 

Assessing model response to environmental factors 

In order to identify the conditions under which the TSM performance reduces its 

effectiveness and assess the factors showing a stronger effect on model performance, the effect 

of nine factors on model accuracy was evaluated. Those factors were chosen in order to reflect 

different conditions of energy supply, water availability, vegetation status and state of the 

boundary layer. 

Three factors were related to the energy supply: solar irradiance (S), cloud sky cover 

represented by a cloud factor (clf), and the surface to-air temperature difference (TR-Ta).  

The cloud factor was estimated as Crawford and Duchon (1999) proposed (Eq. 2). clf 

ranges from a totally clear sky is represented by clf=0 to a totally covered sky conditions 

represented by clf=1. 

 

clf=1- s                               (2) 

 

where s is the ratio between solar irradiance (S) and potential clear sky irradiance at the 

ground (Rso). Rso was estimated by Eq.3, an approach proposed by Allen et al. (1998) based on 

Beer’s Law.  

 


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P
RR aso                  (3) 

 

where Ra (MJ m-2) is the extraterrestrial solar irradiance that depends on the day of the 

year, latitude and solar time, Kt is a turbidity coefficient  whose value is assumed in our study to 
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be 1 reflecting clean air conditions; P is the atmospheric pressure (kPa) and φ  is the angle of the 

solar elevation angle (rad).  

Two factors were selected to represent water availability conditions: soil water content 

(SWC) measured at 0.04 m depth in a bare soil area and vapor pressure deficit (VPD). Two 

factors were mostly related to vegetation status: leaf area index (LAI) and the difference between 

soil and surface radiometric temperature (Ts-TR). TR can be used as an indirect indicator of the 

vegetation status so that when (Ts-TR) is high, vegetation should be colder than soil, suggesting 

possibly high transpiration rates, while when (Ts-TR) is low or even negative, this suggests that 

vegetation is inactive and/or is strongly water stressed. 

Finally the two factors related to boundary layer conditions were wind speed (WS) and the 

stability index zs/L (Monteith and Unsworth 1990), where zs is the effective height of the flux 

measurement system and L is the Monin-Obukhov length. Based on this stability index, the 

atmospheric conditions can be divided in stable (zs/L >0.01), neutral (-0.01<zs/L<0.01) and 

unstable conditions (zs/L< -0.01). 

To study the TSM effectiveness over the observed range of variation of the nine factors, 

we used a data subset that included only those observations for which the accuracy of the TSM 

was not significantly affected by the solar elevation and the time of day conditions according to 

the analysis previously exposed of the diurnal behavior of the TSM (see previous Section). In 

this way the effect of the factors over the TSM was studied controlling for two previously 

studied factors: SE and Time of day The observed range of variation of each factor was divided 

in 5 classes (See Table 2) and model accuracy was quantified for each class established with a 

minimum number of observations (n>11). Four statistics were used to quantify model accuracy 

over H: Mean Absolute Percentage Error (MAPE, Eq. 1), Mean Percentage Error (MPE, Eq. 4), 

the slope of the regression between observed and predicted H and the coefficient of 

determination (R2). 
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  These four statistics were calculated for each of the five classes within each 

environmental factor. 
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Extrapolation from instantaneous to daytime fluxes 

We evaluated two methods to extrapolate daytime turbulent fluxes, HD and LED, from 

instantaneous estimates of TSM, (Hi, LEi and AEi): i) using midday estimates of the evaporative 

fraction (EF) and the non evaporative fraction (NEF) derived from TSM and assuming that 

those remain constant during the daytime period (EF method or NEF method respectively) and 

ii) by averaging all the estimates of Hi and LEi available during daytime (Averaging method).  

The EF or NEF method is based on the assumption that both EF, which is the portion of 

available energy (AE = Rn - G) dissipated as latent heat flux (EF=LE/AE), and its 

complementary NEF, the portion of available energy dissipated as sensible heat flux 

(NEF=H/AE), remain constant along the daytime period (Crago 1996). Based on this 

assumption, HD and LED can be estimated from instantaneous values of EFi or NEFi and daytime 

averages of  the available energy (AED) as it is presented in Eq. 5 and 6 (with i and D subscripts 

referring instantaneous and daytime averages respectively).  
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H ×=⇒=⇔=                                                          (6) 

 

Traditionally, midday estimates of NEFi or EFi have been used in Eq. 5 and 6 (Lhomme 

and Elguero 1999; Bastiaanssen et al. 1998). In the present work, we computed midday values of 

NEFi and EFi by averaging the 15-min estimates of NEF and EF between 12am to 1pm (solar 

time) in order to reduce the variability inherent to flux modelling at 15-min time steps,. 

Estimates of AED were computed as the daytime average of the 15min available energy (AEi) 

estimated from Capítulo 1.  

The EF or NEF method and the Averaging method were applied to estimate HD and LED 

for those days for which both measurements and estimates of Hi and LEi were available during 

the entire daytime period (with Rn > 55 W m-2). This resulted in a data subset of only 24 days, 

including clear sky and cloudy days, randomly distributed during the complete study period.   

A prior step in the EF or NEF method, was to study baseline errors derived from the 

assumption of daytime self preservation of EF and NEF. For this purpose, HD and LED were 
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estimated for the same 24 days data subset by using EF, NEF and AED from the EC data, rather 

than from TSM outputs This allowed to characterize the proportion of error intrinsic to this 

temporal up-scaling method in our Mediterranean semiarid conditions and for discussing the 

reliability of the self preservation assumption under such conditions. 

While the daytime values of HD were presented in energy terms (Wm-2), the daytime 

values of LED were transformed in total E values (mm day-1) to facilitate the comparison with 

other studies following Eq. 7. 

 

DD LE
t

E
ρλ
∆=                              (7) 

 

where ∆t is the number of seconds comprised in the daytime period, λ is the latent heat of 

vaporization (Jg-1) and ρ is the density of water (1000 g m-3). 
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RESULTS 
 
Diurnal behaviour of the TSM  

The TSM performance under different ranges of solar elevation (SE), using the entire 

analysis data set (N= 2991), is shown in Table 1. A significant influence of SE on the accuracy 

of H estimates from both model versions, TSMP and TSMS, was found by the Tukey test (p-

values < 0.05). High percentages of error were found for H under conditions of solar elevation 

lower than 25º (MAPE>100%). Similar results were found for TSMP and TSMS (Fig. 1A). 

However, accuracy at solar elevations higher than 25º was rather constant with errors around 

26% for TSMP and a 33% for TSMS and no significant differences in the MAPE values (see 

letters from Tukey test in Table 1). The correlation between observed and predicted values, 

represented by R2, did not change significantly either for parallel (R2~0.45) or series (R2~0.48) 

when solar elevation was higher than 25º. Therefore a robust behaviour of the two resistance 

versions of the TSM can be considered only for solar elevation conditions higher than 25º, 

although still a high standard deviation (std) of MAPE values was found for SE conditions 

between 25-35º. 
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Figure 1. Evolution of the accuracy statistics of the TSM, mean absolute percentage error (MAPE) and coefficient 
of determination (R2),using the parallel (black line with filled triangles) or series (grey dashed line with hollow 
circles) resistance network, under different ranges of solar elevation (N=2991) (A) and along daytime hours (N= 
2677) (B). In brackets statistics found out of scale. Tabulated values and related additional analyses are shown in 
Table 1. 
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The analysis of the effect of the time of day was performed excluding data with solar 

elevation conditions lower than 25º, under which the TSM clearly failed, resulting in a subset of 

N=2677. The time of day factor still presented a significant effect (p-value < 0.05 in ANOVA 

test) and results in Table 1 show that a significant increase of errors was observed using 7am 

data both for TSMP and TSMS (73% and 61% MAPE values respectively), but errors remained 

lower than 40 % for the rest of the daytime (Fig. 1B). The TSMP scheme did not presented 

significant differences in mean MAPE at all times of day between 8am to 4pm, with errors 

ranging from 15% to 35% and R2 values ~0.65 except at 4pm when R2 decreased to 0.22. The 

TSMS scheme did not presented significant differences in MAPE from 8am to 2pm with values 

ranging from 20% to 39% and  R2 values ~0.69, but a significantly better accuracy was found 

during the early afternoon (4 pm) (11% of error). Despite of this, standard deviation, std, of the 

mean absolute percentage errors remained high respect to MAPE values for TSMP and for TSMS  

until 10am (Table 1).  

Therefore this sequential analysis revealed that a robust behaviour of the TSM, for both 

parallel and series resistances schemes, was found in our semiarid site only for solar elevation 

conditions higher than 25º and a time of the day between 10 and 3pm (both included). Under 

such conditions the accuracy of H estimates from the TSM remained lower than 36% (with 

reduced standard deviations) and the R2 was higher than 0.5 for both model versions, TSMP and 

TSMS. 
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Table 1. Statistic of the TSM performance for specific conditions of two factors (solar elevation and time 
of day).  Mean absolute percentage error (MAPE) and standard deviation of MAPE (std), letters from 
Tukey test and coefficient of determination (R2) are shown for each factor-range. Different letters from 
Tukey test show significant differences between mean MAPE values of the TSM in the different ranges 
within each factor.  

Factor     TSMP   TSMS 
             
Solar 
elevation 

 
N 

 MAPE 
(%) 

std 
(%) 

Tukey 
test 

R2 
  

MAPE 
(%) 

std 
(%) 

Tukey 
test 

R2 

             
0º - 15º  35  1828 3604 c 0.00  1422 2864 c 0.01 
15º - 25º  279  269 1867 b 0.55  214 1541 b 0.57 
25º - 35º  620  34 90 a 0.41  35 73 a 0.44 
35º - 45º  712  27 33 a 0.40  36 24 a 0.40 
45º - 55º  543  29 54 a 0.47  36 41 a 0.50 
55º - 65º  489  24 15 a 0.53  32 14 a 0.57 
65º - 80º  313   18 12 a 0.48   27 13 a 0.51 
Total N:  2991           
             
Time of 
day 

 
N 

 MAPE 
(%) 

std 
(%) 

Tukey 
test 

R2 
  

MAPE 
(%) 

std 
(%) 

Tukey 
test 

R2 

             
7:00  72  73 246 c 0.34  61 203 d 0.35 
8:00  210  31 44 ab 0.55  32 33 ac 0.57 
9:00  317  35 81 b 0.64  39 60 a 0.67 
10:00  403  28 22 ab 0.69  34 17 a 0.71 
11:00  386  24 13 ab 0.71  34 13 a 0.72 
12:00  388  25 13 ab 0.70  35 13 a 0.72 
13:00  382  25 15 ab 0.69  34 16 a 0.72 
14:00  309  22 14 ab 0.65  31 14 abc 0.69 
15:00  157  15 19 a  0.51  20 13 bc 0.64 
16:00  53  34 26 ab 0.22   11 10 b  0.56 
Total N:  2677                     

 
 
 
TSM response under different environmental conditions  

The five classes in which the nine factors were binned are shown in Table 2. These 

different factors and classes with their corresponding modelling error are depicted in Figure 2. 

This analysis was done using a data subset comprising only daytime data with a robust behaviour 

of the TSM based on previous analysis (solar elevation conditions higher than 25º and data from 

10am to 3pm), leading a total number of cases of N=2025. 
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Table 2. Range of values included in each factor’s class. Total observed range is presented for each 
environmental factor. N is the number of observations included in each class. Only cases when solar elevation is 
higher than 25º and between 9am and 3pm time of day were included in this analysis (N=2025). 

S  (W m-2)   clf   ( - )   TR -Ta (ºC) 
class ranges N  class ranges N  class ranges N 
I 140 - 350 48  I 0.00 (clear sky) 1355  I < 2.2 20 
II 350 - 550 263  II 0.00 - 0.17 287  II 2.2 - 4.4 1015 
III 550 - 750 800  III 0.17 - 0.35 217  III 4.4 - 6.6 764 
IV 750 - 950 805  IV 0.3 - 0.52 114  IV 6.6 - 8.8 162 
V > 950  109  V >0.52  52  V > 8.8 64 
Observed range: [140 , 1173]   Observed range: [0.00 , 0.70]  Observed range: [1.4  , 10.7] 
           

SWC  (vol/vol)    VPD  (kPa)     LAI   ( - ) 
class ranges N  class ranges N  class ranges N 
I 0.03 - 0.07 663  I 0.0 - 0.4 51  I 0.30 - 0.38 417 
II 0.07 - 0.11 727  II 0.4 - 0.8 577  II 0.38 - 0.46 246 
III 0.11 - 0.15 296  III 0.8 - 1.2 697  III 0.46 - 0.54 372 
IV 0.15 - 0.19 147  IV 1.2 - 1.6 373  IV 0.54 - 0.62 580 
V >0.19 192  V >1.6 327  V >0.62 410 
Observed range: [0.03 , 0.24]  Observed range: [0.08 , 3.4]  Observed range: [0.30 , 0.70] 
           

Ts -TR (ºC)  WS  (m s-1)   Stability index (zs/L)  
class ranges N  class ranges N  class ranges N 
I < 0.0 21  I 0.0-1.5 70  I > -0.010 (neutral) 43 
II 0.0-2.0  424  II 1.5-3.0 309  II -0.010 , -0.340 1901 
III 2.0 - 4.0 1022  III 3.0-4.5 596  III -0.340 , -0.670 56 
IV 4.0 - 6.0 494  IV 4.5-6.0 447  IV -0.670  , -1.000 14 
V > 6.0 64  V >6.0 603  V < -1.000 11 
Observed range: [-1.1 , 7.2]   Observed range: [0.04  , 12.3]   Observed range: [-4.050 ,  -0.003] 

 

The conditions for which the TSM presented the strongest decrease in accuracy were 

related to a low energy supply: S<300 W m-2 (class I) and (TR –Ta) < 2.2 ºC (class I). The highest 

MAPE values observed in those cases (class I) coincided with H overestimates (high and 

positive MPE values) and low correlation and slopes (Fig. 2). It is noticeable that under these 

conditions of reduced energy supply the errors were significantly lower using the TSMS although 

the correlation was still poor. The surface to-air temperature difference (TR –Ta) was the factor 

showing the strongest effect over MAPE values among all the analyzed factors. A progressive 

improvement of the TSM accuracy was observed as long as the (TR –Ta) increased (from classes 

I to V). Thus, both resistance versions of the TSM showed the highest accuracy for class V of 

(TR –Ta) factor (TR –Ta > 8.8ºC), with 13% and 22% MAPE values for parallel and series 

schemes respectively. However the linear agreement was poor (low R2 and slope values) for 
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class V of (TR –Ta). For the other factor indirectly related to energy supply, the cloud factor clf, 

the TSM showed lower MAPE and MPE values at medium classes of clf factor (classes III and 

IV) than for clear sky class (class I) and the parallel and series resistance schemes of the TSM 

presented a different response when sky was strongly covered. While TSMP presented a clear 

decrease in accuracy with MAPE>50% and overestimates of H (positive and high MPE values 

~50%) when cloudiness was high, clf >0.52 (class V), the TSMS did not increase the percentage 

errors substantially under such conditions. 

MAPE values of the TSM slightly increased when water availability was high (see 

evolution of MAPE values along the SWC gradient Fig.2), and the linear agreement between 

observed and predicted H values was clearly better (higher R2 and slope) at low ranges of SWC 

showing a progressively deterioration to higher SWC conditions. In agreement with that, the 

TSM accuracy was slightly better when VPD was high (see evolution of MAPE values along 

VPD gradient) and the linear agreement improved, specially the slope, at high VPD classes (Fig. 

3). Furthermore, a similar response to variations on SWC and VPD was found for TSMP and 

TSMS. 

Regarding to the influence of factors related to the vegetation state, it is remarkable that 

high R2 values and slope values close to one, were found for low LAI levels (classes I and II) 

dropping for higher LAI values (LAI>0.46) although no strong variation of the TSM model 

errors (MPE and MAPE) was found for the five LAI classes. In the same direction, a worse TSM 

performance was found when temperature differences between Ts and TR were high reflecting 

more active vegetation. The (Ts - TR) factor showed higher errors (MPE and MAPE) and lower 

linear correlation from classes I to V (Fig. 3).This suggests that the TSM works more accurately 

when differences between soil and vegetation temperatures are low or even negative which is 

usually related with less active vegetation in accordance to a better performance at lower rather 

than high LAI values.  
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Figure 2. Evolution of the TSM accuracy statistics: mean absolute percentage error (MAPE), mean percentage error (MPE), coefficient of determination (R2), and slope of the linear 
regression between the observed and predicted values of H, for the five classes of each analyzed factor (Table 2). Only observations with solar elevation>25º and time of day between 
10am and 3pm were included in this analysis (N=2025).  
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Finally, the analysis of the factors related to the boundary layer state, WS and stability 

index zs/L, showed that the TSM accuracy clearly improved under higher wind speed conditions. 

A progressive reduction of MAPE and MPE with increasing wind speed was found as well as a 

better linear agreement. Figure 2 shows clearly that under neutral stability conditions (class I), 

the TSM presented very high errors (MAPE and MPE) when using the parallel resistance 

scheme, TSMP. However, when using the TSMS, lower errors occur under neutral conditions than 

under unstable conditions. Within the gradient of unstable conditions (classes II to V) all error 

statistics seemed to increase to more unstable conditions, both for TSMP and TSMS, but the 

unequal number of observations included within unstable classes (Table 2), makes difficult to 

asseverate this last idea. 

Additionally, it is notable that the TSMP showed lower overall errors (MAPE and MPE) 

and slope values closer to 1 with similar R2 values than the TSMS. However, the TSMS showed a 

slightly more robust behaviour than the TSMP reducing the model percentage errors under some 

specific conditions related with low energy supply (class I of S factor, class V of clf factor, class 

I of (TR -Ta) factor) and with atmospheric neutral conditions (class I of the zs/L factor).   

As general highlights we can indicate that the effectiveness of the TSM, under the two 

possible resistance schemes, clearly decreased when the (TR –Ta) was lower than 2.2ºC and when 

WS was lower than 1.5 ms-1. For those conditions the TSM presented MAPE>40%, R2<0.4 and 

slope<0.4. The conditions under which the TSM performance was better, coinciding lower errors 

(MAPE and MPE) and high values of slope and R2, were conditions characterized by low SWC, 

low LAI, and reduced thermal differences between soil and total surface. 

 

Daytime fluxes extrapolation from instantaneous values  

Our results showed that, despite of both temporal up-scaling methods, Averaging and NEF 

methods, produced underestimates of HD using instantaneous estimates from the TSM (Fig. 3), 

the Averaging method presented lower errors (20-36% vs. 31-43%) and substantially better R2 

values (0.85-0.86 vs. 0.41-0.50) than the NEF method (Table 3). It is also remarkable that HD 

estimates were always more underestimated using instantaneous estimates from TSMS.  
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Figure 3. Scatterplots between estimated and observed daytime HD, obtained by the NEF method (A) 
and the Averaging method (B) respectively both applied using TSM outputs for instantaneous fluxes, 
versus observed (eddy covariance measured) HD. (N=24 days). Dashed line is the 1:1 line.  

 

Daytime E was strongly overestimated with any of the two temporal up-scaling methods 

(Fig. 4). Estimates of daytime E showed MAEs ranging from 1.27 to 1.80 mm day-1 which 

represent more than the 100% of the mean observed E (1.02 mm day-1 ) (Table 3). However it is 

important to notice that the correlation was high for all methods showing R2 values between 

0.82-0.85. The Averaging method presented lower MAPE values (125-162% using TSMP and 

TSMS respectively) than the EF method (146-177%) and the scatter between the observed and 

predicted was lower for the Averaging method at low values of daytime E (E<1 mm day-1) (Fig. 

4).  
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Figure 4. Scatterplots between estimated and observed daytime E, obtained by the EF method (A) and 
the Averaging method (B) respectively both applied from TSM derived instantaneous fluxes, versus 
observed daytime E. (N=24 days). Dashed is the 1:1 line.  
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Despite of the fact that daytime estimates of turbulent fluxes using the EF or NEF method 

were less accurate than with the Averaging method when using TSM estimates, the EF or NEF 

method seems highly efficient when using the retrieved EC fluxes instead (Fig. 5). The 

assumption of daytime self-preservation of EF and NEF only resulted in a mean absolute error of 

13.2 W m-2, which represents a percentage error of only 8% and 16% of the daytime measured 

HD and LED respectively. This fact shows evidence that errors affecting daytime estimates of HD 

and E obtained by the EF or NEF method using TSM derived fluxes, were mainly related to 

inaccuracies affecting the TSM instantaneous fluxes. 

 

Table 3. Statistics showing the accuracy of the estimated daytime averaged H, HD, and daytime E,ED, obtained 
by the EF or NEF method and the Averaging method respectively based on instantaneous estimates from the 
TSM under the two resistance approaches in parallel (TSMP) and in series (TSMS). Root mean squared error 
(RMSE), mean absolute error (MAE), in brackets the percentage that MAE represents to the mean measured 
flux and determination coefficient R2 are showed (N=24 days for all cases). 

Flux Scaling method RMSE (Wm-2)  MAE (Wm-2)  R2 
    TSMP TSMS   TSMP TSMS   TSMP TSMS 

NEF method 58 78  55 (31%) 75 (43%)  0.41 0.50 
HD 

Averaging method 39 66  35 (20%) 63 (36%)  0.85 0.86 
                        
  RMSE (mm day-1)  MAE (mm day-1)  R2 
  TSMP TSMS  TSMP TSMP  TSMP TSMS 

EF method 1.54 1.85  1.48 (146%) 1.80 (177%)  0.82 0.84 
ED 

Averaging method 1.31 1.69 
  

1.27 (125%) 1.65 (162%)   0.84 0.85 
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Figure 5. Scatterplots between the estimated daytime HD, (left panel) and LED, (right panel) obtained 
when applying the NEF method and EF method respectively using measured values of midday NEF, 
EF and AED versus the observed HD  and LED (N=24 days). Dashed line is the 1:1 line. Mean absolute 
error (MAE) is shown and in brackets. 
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DISCUSSION 
 

Diurnal behaviour of the TSM  

Our analysis of the diurnal behaviour of the TSM showed that the TSM accuracy was 

clearly affected by the solar elevation and the time of the day. The TSM effectiveness was 

clearly reduced at solar elevation angles lower than 25º and also at marginal hours of the daytime 

period (before 10am and after 3pm) even at SE>25º (Fig. 1 and Table 1). A similar increase on 

errors affecting modelled H at marginal daytime hours was pointed out by Su (2002) using a 

Surface Energy Balance System (SEBS). They found the highest model errors, around 40-50 W 

m-2, during marginal daytime hours and proposed as main explanation failures in stability 

corrections affecting these transition periods from nightime stable conditions to daytime unstable 

conditions (Su 2002). We think that, in the case of the TSM, an additional factor is responsible 

for the decrease of model accuracy under marginal time of day hours. Kustas and Norman et al. 

(1997) showed that the uncertainty affecting the surface to air temperature difference estimates, 

(TR-Ta), largely affects the accuracy of H using TSM (uncertainties of ±3ºK in TR-Ta leads >50% 

variation in H). We also found that model accuracy decreased when (TR-Ta) was low even around 

midday (Fig. 2). Therefore, we consider that the uncertainty associated to the IRT sensors 

(Kustas et al. 2012) can cause stronger errors on TR-Ta when temperatures are low, i.e at around 

sunrise or sunset when the solar elevation angles are low. This fact could explain the decrease of 

the TSM effectiveness under such conditions. From our results, it can be stated that a robust 

behaviour of TSM can be expected under solar elevation angles higher than 25º for the daytime 

period between 10am and 3 pm (both included) under natural semiarid conditions. Consequently, 

we would only recommend applying the TSM using satellite data over natural semiarid areas 

when they are acquired within this range of daytime and solar elevation angle conditions. 

 

TSM response under different environmental conditions  

The TSM has been particularly recommended for conditions of clear sky, high thermal 

difference between soil and canopy (Wang and Dickinson 2012) and no presence of senescent 

vegetation (Colaizzi et al. 2012a; Norman et al. 1995). However, these recommendations are 

mainly derived from studies on irrigated semiarid agricultural areas. The analysis presented in 

this paper revealed a different response of the TSM under natural semiarid conditions. Under the 

range of conditions observed in our Mediterranean tussock grassland, the TSM presented the 

highest limitations when the surface-air thermal gradient was low (TR-Ta < 2.2ºC). Under these 
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conditions, TSM clearly overestimated H (Fig. 2). Norman et al. (2000) also found high errors 

affecting H estimates using TSM when TR -Ta was low. They showed that the Dual Temperature 

Difference method (DTD), which mainly reduces model sensitivity to errors associated with 

absolute values of TR and Ta, offered a clear improvement of H estimates when (TR -Ta) was low. 

This is proving that TSM errors when (TR -Ta) is low are related to uncertainties affecting 

temperature measurements. As a practical aspect, it is important to enhance that our results 

showed the TSMS clearly reduced errors when (TR -Ta) < 2.2ºC in comparison with the TSMP. 

This is because of the air temperature in the canopy interface (Tac), which is considered in TSMS, 

partially reduces the sensitivity to absolute errors TR and Ta (Capítulo 1). 

Other factor analyzed in the present study, which affects the TSM accuracy but has not 

been deeply studied before, is the cloudiness, represented here by the cloud factor, clf. It is 

important to notice that most of the previous TSM analyses were restricted to clear-sky 

conditions, because of the absence of satellite data retrievals for cloudy days (French et al. 2005; 

Li et al. 2005) or just because cloudy conditions were removed from the analysis to ensure 

relatively steady-state energy fluxes (Colaizzi et al. 2012a). Kustas et al. (2002) found that H 

retrievals, from a temperature based one source model, presented a high sensitivity to high 

fluctuations in TR derived from intermittent cloudy conditions in a riparian site. Our analysis 

showed on the contrary that under natural semiarid conditions the TSM accuracy was not 

reduced under medium covered sky conditions (0 < clf < 0.52) founding even lower percentages 

of error (MAPE and MPE) than for clear sky conditions for both resistance schemes (Fig. 2). 

This different response could be related with the different factors driving the water and energy 

fluxes in well-watered ecosystems, as riparian areas, controlled by energy supply, versus in 

water-limited ecosystems, as in our Mediterranean semiarid grassland, controlled by water 

availability. However, further analyses would be necessary to determine the reasons of that 

different response of the TSM under the two different scenarios. The decrease of the TSM 

performance under the maximum cloud cover sky conditions observed (clf > 0.52), more 

noticeable when using the TSMP, could be more related to the effect of uncertainties of 

temperature measurements since temperatures when cloudiness is high can be expected lower 

(exposed earlier) than with clear skies.  

The limitations previously found for the TSM performance under conditions of high 

fraction of senescent vegetation (Colaizzi et al. 2012a; French et al. 2007; Kustas and Norman 

1997; Norman et al. 1995) were not observed under our natural semiarid conditions. Our results 

on the contrary showed that a better model performance was found under conditions of low or 
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even negative (Ts-TR), low LAI, and low SWC. However, under our natural semiarid conditions a 

new factor showing an important effect over the TSM accuracy, was identified, the wind speed. 

The TSM offered better H estimates, when wind speed was high and clearly reduced its accuracy 

at low wind speeds. Neutral stability conditions (class I of the zs/L factor) showed as well an 

important decrease of the TSM accuracy, but only using the parallel resistance scheme. 

  

Daytime fluxes extrapolation from instantaneous values  

Daytime retrievals of turbulent heat fluxes under natural semiarid conditions were found in 

this study to be more accurate for H, with minimum errors of 20% and R2=0.85, whereas higher 

errors were found for daytime values of E with minimum errors of 125% but high correlations, 

R2=0.84 (Table 3). Previous studies have shown clearly a better capacity of the TSM to estimate 

daytime E (Kustas et al. 2012; Kustas and Norman 1997) or daily (24h) E (Colaizzi et al. 2012b; 

Gonzalez-Dugo et al. 2009) than that found in our conditions, with errors ranging from 5 to 25%. 

However, it is important to consider that all those studies were performed in areas (irrigated 

agricultural semiarid sites and grass tall prairies), where the latent heat flux was the dominant 

turbulent heat flux, whereas in our Mediterranean natural semiarid site the dominant flux was H. 

Indeed HD was 71% of measured daytime available energy for the 24 days that were included in 

our daytime analysis. Therefore, the percentage of error found for daytime estimates of the 

dominant turbulent heat flux in our site (H) was within the range of errors of the dominant 

turbulent heat flux in other sites. However, with regard to daytime E, other two source models 

that have been tested in this specific field site have shown better accuracies, with errors ranging 

between 30-35% although they explained a lower percentage of the flux variability (with R2 

between 0.47 and 0.57 ) (Capítulo 3; Capítulo 4).  

Comparison of the two methods to up-scale the instantaneous estimates of turbulent heat 

fluxes to daytime values, better estimates were found using the Averaging method (Table 3). 

This is because in the Averaging method the overestimation found at marginal daytime hours, 

when S is reduced, and the underestimation found at midday, when S is high (Fig. 2), were 

compensated by the averaging procedure. This evidences a higher potential of geostationary 

satellites such as MSG-SEVIRI or GOES or ground sensors as preferential data sources to 

estimate daytime fluxes by mean of TSM in natural semiarid sites compared to polar-orbiting 

satellites such as MODIS or ASTER, which will depend on the EF or NEF method to obtain 

daytime fluxes. Nonetheless, despite of the lower accuracy found by the EF or NEF method to 

estimate daytime values using instantaneous TSM outputs, this method proved to be efficient 
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when using instantaneous EC fluxes (Fig. 5). Gentine et al. (2011) stated recently that the diurnal 

behaviour of the EF (and therefore its complementary NEF) exhibits daytime self-preservation 

only under limited conditions of clear skies, humid air, and strong solar radiation based on a 

deep study performed in an irrigated wheat crop at a semiarid site. However we found that the 

self-preservation assumption only resulted in percentage errors of 8% and 16% for HD and LED 

respectively, even when including cloudy days (10 of 24 tested days presented cloudiness). 

Similar agreement was found for cloudy than for clear sky days (results not shown) using 

measured instantaneous fluxes. This indicates that cloudiness did not affect the daytime self-

preservation of EF or NEF under our conditions. This agrees with the results from Farah et al. 

(2004) who pointed out no effect of clouds on the diurnal cycle of EF in semiarid areas and 

stated a fairly stable behaviour of daytime EF pattern for areas with high available energy, 

moderate to dry surface conditions and high surface resistance. Thus, the EF or NEF method was 

not operational in our conditions because of inaccuracies affecting to TSM retrievals but our 

results showed that it could be operational if improvements on those estimates were achieved. 

Finally, our analyses also showed that better estimates of daytime E and HD were found 

using the parallel version of the TSM than the series one, despite of a slight decrease in the 

correlations (Table 3). From the TSMS, HD was systematically more underestimated by the two 

temporal up-scaling methods (Fig. 3) and consequently daytime E was more overestimated (Fig. 

4) than with the TSMP. A previous study also found better daytime estimates of LE from the 

parallel than from the series version of the TSM when soil and canopy temperatures derived 

from dual angle surface temperature was used in a tall grass prairie (Kustas and Norman 1997). 

This seems to indicate that despite of the more robust behaviour of TSMS at instantaneous time 

scales; the TSMP presents a clear advantage to estimate daytime turbulent heat fluxes.  
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CONCLUSIONS 

 

A detailed analysis has been performed to evaluate the main factors affecting the TSM 

effectiveness under water stress conditions typical of Mediterranean drylands. By means of a 

sequential analysis, we proved that the TSM was affected by the two factors associated with 

variations in solar irradiance along the daytime period and also seasonal course: solar elevation 

and time of day. Our results proved that a robust behaviour of the TSM can only be expected for 

conditions with solar elevation angles higher than 25º and during daytime hours from 10 am to 3 

pm (both conditions simultaneously). It was also proved that, under natural semiarid conditions 

here evaluated, the TSM was not sensitivity to some environmental factors, such as cloudiness or 

vegetation status, which indeed did affected the model performance in other sites without water 

stress. Thus, in our study the TSM accuracy was not reduced under medium cloudiness 

conditions (0 < clf < 0.52) with TSM accuracy even being improved with respect to clear sky 

conditions. Furthermore, when a high portion of senescent vegetation is expected, with higher 

water stress (low SWC and high VPD) and very stressed vegetation (low or even negative values 

of TR-Ts), the TSM effectiveness was not just reduced but instead increased in our semiarid site. 

The environmental factors that affected more strongly the TSM performance in our site were the 

surface to air temperature difference (TR-Ta) and the wind speed, with an increase of accuracy 

when both factors were high. In general, the TSMP showed overall lower errors and a lower 

tendency to underestimate at high H values, but the TSMS reduced model errors under low 

energy supply conditions and atmospheric neutral conditions.  

Finally, the ability of the TSM to estimate daytime turbulent fluxes was only demonstrated 

for the dominant sensible heat flux, HD, despite of a systematic tendency to underestimate. 

Daytime E values were strongly overestimated using the TSM, but a high portion of its 

variability could be explained. Using instantaneous fluxes from the TSM, the Averaging method 

together with the parallel version of TSM provided better daytime estimates than the EF or NEF 

method. This implies that data from geostationary satellites such as MSG-SEVIRI or from 

ground located sensors should be used as preferential data sources to estimate daytime fluxes 

using the TSM rather than polar orbiting sensors such as MODIS. 
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ABSTRACT 
 
An adaptation of a simple model for evapotranspiration (E) estimations in drylands based on 

remotely sensed leaf area index and the Penman-Monteith equation (PML model) (Leuning et al. 

2008) is presented. Three methods for improving the consideration of soil evaporation influence 

in total evapotranspiration estimates for these ecosystems are proposed. The original PML 

model considered evaporation as a constant fraction (f) of soil equilibrium evaporation. We 

propose an adaptation that considers f as a variable primarily related to soil water availability. 

In order to estimate daily f values, the first proposed method (fSWC) uses rescaled soil water 

content measurements, the second (fZhang) uses the ratio of 8 days antecedent precipitation and 

soil equilibrium evaporation, and the third (fdrying), includes a soil drying simulation factor for 

periods after a rainfall event. E estimates were validated using E measurements from eddy 

covariance systems located in two functionally-different sparsely vegetated drylands sites: a 

littoral Mediterranean semiarid steppe and a dry-subhumid Mediterranean montane site. The 

method providing the best results in both areas was fdrying (mean absolute error of 0.17 mm day-

1) which was capable of reproducing the pulse-behavior characteristic of soil evaporation in 

drylands strongly linked to water availability. This proposed model adaptation, fdrying, improved 

the PML model performance in sparsely vegetated drylands where a more accurate 

consideration of soil evaporation is necessary. 

 

 

Keywords: evapotranspiration, canopy condutance, soil evaporation, LAI, optimization, soil 
water content, soil potential evaporation 
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INTRODUCTION 
 

Evapotranspiration (E), which is the sum of evaporation from soil (Es) and plant canopies 

(Ec) including rainfall interception, is the largest term in the terrestrial water balance after 

precipitation. E determines the balance between recharge and discharge from aquifers (Huxman 

et al. 2004; Huxman et al. 2005) and in drylands around 90 to 100% of annual precipitation 

returns to the atmosphere from the surface (Glenn et al. 2007) by mean of this process. 

Concurrently, latent heat flux (LE), the energetic equivalent of E, plays an important role in the 

surface energy balance affecting terrestrial weather dynamics and vice versa.  

Accurate regional estimation of E is necessary for many operational applications: irrigation 

planning, management of watersheds and aquifers, meteorological predictions and detection of 

droughts and climate change. Remote sensing is the only feasible technique for E estimation at 

regional scales with a reasonable degree of accuracy (Guerschman et al. 2009; Kustas and 

Norman 1996). Many methods have been developed for estimating regional E in the last 

decades, including those based on remotely sensed surface temperature (see reviews by Glenn et 

al. 2007; Kalma et al. 2008; Wang and Dickinson 2012). However, there are some difficulties 

associated with using surface temperature for regional E estimation, mainly differences between 

aerodynamic and radiometric temperature (Stewart et al. 1994) or complexity of using 

instantaneous thermal data for flux estimation at larger time scales (Cleugh et al. 2007). This has 

motivated development of other methodologies. In this context, Cleugh et al. (2007) presented a 

method for E estimation based on regional application of the Penman-Monteith (PM) equation 

(Monteith 1964) using leaf area index (LAI) from MODIS (Moderate Resolution Imaging 

Spectrometer) and gridded meteorological data. This work stimulated a number of later studies 

(Leuning et al. 2008; Mu et al. 2007; Mu et al. 2011; Zhang et al. 2010; Zhang et al. 2008) that 

have demonstrated the potential of the PM equation as a robust, biophysically based framework 

for E estimation using remote sensing inputs (Leuning et al. 2008). 

The key parameter of the PM equation is the surface conductance (Gs), which defines the 

facility of the soil-canopy system to lose water. A simple linear relationship between Gs and LAI 

was proposed by Cleugh et al. (2007) for estimating E at two field sites in Australia. Mu et al. 

(2007) took one step forward with separate estimation of evaporation from soil (Es) and canopy 

(Ec) and a more detailed formulation for Ec considering the effects of vapor pressure deficit (Da) 

and air temperature (Ta) on canopy conductance (Gc). Based on these studies, Leuning et al. 

(2008) developed a less empirical formulation for Gs to apply the PM equation at regional scale. 
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This new formulation considers both soil and canopy evaporation. For Gc a biophysical 

algorithm based on radiation absorption and Da was proposed, whereas soil evaporation was 

estimated as a constant fraction, f, of soil equilibrium evaporation (Priestley and Taylor 1972) 

defined as the evaporation rate under ideal conditions of water availability and saturated 

atmosphere controlled exclusively by energy supply. Application of the Penman-Monteith-

Leuning, PML model, as it was named by Zhang et al. (2010), requires commonly available 

meteorological data, LAI data from MODIS or other remote-sensing platforms and two main 

parameters, considered by Leuning et al. (2008) to be constants: gsx, maximum stomatal 

conductance of leaves at the top of the canopy and f, representing the ratio of soil evaporation to 

the equilibrium rate. The original PML model was evaluated using data from 15 Fluxnet sites 

located across a wide range of climatic conditions and vegetation types with good general results 

(average systematic root-mean-square error in daytime mean E of 0.27 mm day-1). Nonetheless 

the model has not been tested in conditions of strong aridity as Mediterranean drylands. 

In drylands, where water availability is the main controlling factor of biological and 

physical processes (Noy-Meir 1973), evaporation from soil can exceed 80% of total E (Mu et al. 

2007). Soil water availability is highly variable in these ecosystems and assuming f is a constant 

as in the original PML model is inadequate. Leuning et al. (2008) acknowledged this limitation 

and recommended that remote-sensing or other techniques be developed to treat f as a variable 

instead of a parameter, especially for sparsely vegetated sites (LAI < 3). To estimate f as a 

temporal variable Zhang et al. (2010) used the ratio between precipitation and equilibrium 

evaporation rate as an indicator of soil water availability. Preliminary results of PML model 

performance at an Australian tropical savannah site showed an improvement of the results for E 

estimation when the Global Vegetation Moisture Index (GVMI) (Ceccato et al. 2002) was used 

to estimate f as a temporal variable (C. Hensley, unpublished data, 2011).  

While these studies are promising, the PML model has not as yet been tested under strong 

water stress conditions characteristic of Mediterranean drylands. In this work we evaluated the 

PML model for estimating daily E in sparsely vegetated semiarid areas using three different 

methods to estimate the temporal variation of f: i) direct soil water content measurements; ii) 

Zhang’s et al. (2010) method adapted for daily application; and iii) a simple model for soil 

drying after rain. We analyzed the three proposed adaptations of PML in two different 

Mediterranean drylands: i) a littoral semiarid steppe; and ii) a shrubland montane site. Both sites 

are characterized by sparse vegetation (LAI < 1) and annual precipitation < 350 mm year-1 during 

the study period. A whole year of E measurements from eddy covariance systems installed at 
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each field site were used to test the adapted PML model to determine the most robust method to 

evaluate f in the studied conditions. 

 

MODEL DESCRIPTION 
 
Penman-Monteith-Leuning model (PML) description  

Not considering for simplicity the canopy rainfall interception, Evapotranspiration (E) is 

the sum of canopy transpiration (Ec) and soil evaporation (Es):  

 

c sE E E= +                             (1) 

 

The fluxes of latent heat associated with Ec and Es were written by Leuning et al. (2008) as  
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where the first term is the PM equation written for the plant canopy and the second term is 

the flux of latent heat from the soil. The variables Ac and As are the energy absorbed by the 

canopy and soil respectively. Ga and Gc are the aerodynamic and canopy conductances, as 

defined below. ε is the slope (s) of the curve relating saturation water vapor pressure to 

temperature divided by the psychrometric constant (γ), ρ is air density, cp is the specific heat of 

air at constant pressure, and Da is the vapor pressure deficit of the air, computed as the difference 

between the saturation vapor pressure at air temperature, esat, and the actual vapor, e (Da = esat - 

e). The factor f in the second term of Eq. 2 modulates potential evaporation rate at the soil 

surface )1/(, += εε sseq AE , by f = 0 when the soil is dry, to f = 1 when the soil is completely wet. 

Changes in energy stored in the soil and plant canopy are negligible on a daily basis and hence 

can be ignored when calculating As = Aτ, where τ = exp(-kALAI) and kA is the extinction 

coefficient for total available energy A. Energy absorbed by the canopy is Ac = A(1-τ) (Hu et al. 

2009; Leuning et al. 2008; Zhang et al. 2010). When eddy covariance data are used for 

validation, A = H +λE can be assumed in order to ensure internal consistency in relation to eddy 

covariance closure error (Leuning et al. 2008). Kustas and Norman (1999) have questioned the 
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reliability of this simple Beer-Lambert law in sparse vegetation but a sensitivity analysis showed 

that Es was insensitive to alternative estimates of As (not shown). Of far greater importance is 

correctly estimating f, as discussed below.  

Aerodynamic conductance Ga is estimated using (Monteith and Unsworth 1990)  
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where k is Von Karman’s constant (0.40), u is wind speed, d is zero plane displacement 

height, zom and zov, are roughness lengths governing transfer of momentum and water vapor and 

zr is the reference height where u is measured. In this version of Eq. 3 the influence of 

atmospheric stability conditions over Ga has been neglected for two reasons: i) in dry surfaces 

where Gc << Ga, E is relatively insensitive to errors in Ga (Leuning et al. 2008); and ii) in 

semiarid areas, where highly negative temperature gradients between surface and air temperature 

are found, correction for atmospheric stability can cause more problems than it solves for 

estimating Ga (Villagarcía et al. 2007). The variables d, zom and zov were estimated via the canopy 

height (h) (Allen 1986): d = 0.66h, zom = 0.123h and zov = 0.1h. Because E is insensitive to Ga in 

arid conditions, we have used these empirical relations even though they were developed for 

crops and may not apply strictly to sparse vegetation (Berni et al. 2009).  

Canopy conductance was estimated using (Isaac et al. 2004; Leuning et al. 2008): 
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where kQ, is the extinction coefficient of visible radiation, gsx is the maximum conductance 

of the leaves at the top of the canopy, Qh is the visible radiation reaching the canopy surface that 

can be approximated as Qh = 0.8A Leuning et al. (2008) and Q50 and D50 are values of visible 

radiation flux and water deficit respectively when the stomatal conductance is half of its 

maximum value. We used Q50 = 30Wm-2, D50 = 0.7kPa, kQ = kA = 0.6 (Leuning et al. 2008). 
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The PML model (Eqs. 2 – 4) includes factors controlling soil evaporation and canopy 

transpiration but accurate estimation of gsx and f is crucial for model success. Three methods for 

estimating f , with increasing complexity, are presented next. 

 

Methods for f estimation 

f as a function of soil water content data (fSWC) 

Evaporation from drying soil is largely controlled by moisture content near the surface and 

thus we used volumetric soil water content measured at 0.04 m to estimate f. A maximum water 

content threshold, θmax, at which soil is considered to evaporate at the equilibrium rate (f = 1), 

and a minimum water content threshold, θmin, at which soil evaporation is considered negligible 

(f = 0) were experimentally determined for each field site in order to rescale observed soil water 

content (θobs) from 0 to 1 as follows: 

 

                         = 1                when, θobs> θmax  

 

 fSWC          = 0            when,  θobs < θmin                                         (5) 

           

                            =obs min

max min

-

-

θ θ
θ θ

             when θmin ≤ θobs ≤ θmax 

 

f as function of precipitation and equilibrium evaporation ratio (fZhang) 

We adapted and tested a method for estimating f presented by Zhang et al. (2010) who 

varied f by the ratio of accumulated values of precipitation (P) and Eeq,s, over N days. Zhang et 

al. (2010) estimated f using N = 32 covering 16 days prior and 16 days after the current day i, but 

here we set N = 8 between day i and seven preceding days (i-7) to match the time resolution of 

LAI from MODIS. The final expression for fZhang is 
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fZhang = 7

, ,
7

 min ,1

i

i
i

i

eq s i
i

P

E

−

−

 
 
 
 
 
 

∑

∑
             (6) 

 

where Pi is the accumulated daily precipitation and Eeq,s,i is the daily soil equilibrium 

evaporation rate for day i.  

 

f as a function of soil drying after precipitation (fdrying) 

Mediterranean areas are characterized by irregular precipitation which causes rapid 

increases in soil moisture during rain followed by extended drying periods. Thus and we propose 

to model this pulsed pattern to improve the time resolution of f compared with the fZhang method.  

The formulation for fdrying is given by  
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     fdrying                                               (7) 

   = fLP exp(-ω ∆t )  when Pi ≤ Pmin 

 

 

where fLP is the f value for the last effective precipitation day (Pi  > Pmin = 0.5 mm day-1), ∆t 

is number of days between this and the current day i and ω is a parameter controlling the rate of 

soil drying, higher ω values reflecting higher soil drying speed. For simplicity ω was considered 

a constant estimated by optimization, even though it is known that ω is related to air temperature, 

vapor pressure deficit, wind speed and soil hydraulic properties (Ritchie 1972). 
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MATERIAL AND METHODS 
 
Validation field sites and measurements 

The PML model was evaluated at two experimental sites located in southeast Spain 

characterized by Mediterranean climate (see Table 1) with stronger aridity conditions than where 

the PML model has previously been tested (Leuning et al. 2008). 

Balsa Blanca is a steppe located in Cabo de Gata Natural Park at 196 m a.s.l. and 6.3 km 

from the coast (36°56'24.17"N; 2°1'59.55"W) showing a Mediterranean semiarid climate. During 

the study period 2006 to 2008 the site experienced a mean annual temperature of 17ºC and mean 

precipitation of 319 mm yr-1, falling mostly during autumn and winter, with very dry summers. 

Vegetation in Balsa Blanca has a fraction cover of 60%. The mean canopy height is 0.7 m (h = 

0.7 m) and is strongly dominated by perennial grass Stipa tenacissima L. (57.2%) though other 

shrub species can be found in lower proportions: Thymus hyemalis Lange (1.7%), Chamaerops 

humilis L. (1.6%), Brachypodium retusum (Pers.) P. Beauv (1.4%), Ulex parviflorus Pourr 

(0.5%), Phlomis purpurea L. (0.2%). Soil has a depth of around 0.15 - 0.25 m and a measured 

daily mean soil water content at 0.04 m depth that ranges between 0.04 m3 m-3 in summer and 

0.25 m3 m-3 after intense rain events. 

Llano de los Juanes is a shrubland plateau located in the Sierra de Gádor at 1600 m 

elevation and 25 km from the coast (36º55’41.7’’N; 2º45’1.7’’W), with mean annual 

temperatures of 13ºC and mean precipitation of 326 mm yr-1 during the study period from 2005 

to 2007. The climate is subhumid montane Mediterranean with irregular precipitation patterns 

mostly in autumn and winter when it may fall as snow. The vegetation is sparse with a cover 

fraction of 50% and a mean canopy height of 0.5 m (h = 0.5 m) dominated by three main species: 

Festuca scariosa (Lag.) Hackel (19%), Genista pumila ssp pumila (11.5%) y Hormatophylla 

spinosa (L). P. Küpfer, (6,3%) (Serrano-Ortiz 2008; Serrano-Ortiz et al. 2009). Soil depth is 

highly variable (between 0.15 m and 1 m) with medium sized stones and outcropping rocks (30–

40% rock fragment content (Serrano-Ortiz et al. 2007). Measured soil water content at 0.04 m 

depth ranged between a minimum of 0.08 m3 m-3in summer and 0.40 m3 m-3 after intense rain 

events.  
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Table 1. Details of validation field sites used in this study.  
Temperature (ºC)   

Field site 
name 

  
Latitude and 
Longitude 

  
Measurements 
dataset used 

  
Elevation 

(m) 

  
Vegetation 

classification 
(IGBP Class) 

  
Dominant species 

  
Mean annual 
precipitation 

(mm) 
Max Mean Min 

Balsa 
Blanca 

36°56'24.17"N
;  2°1'59.55"W 

October 2006 -
December 2008 

196 Stipa tenacissima 319 33 17 4 

Llano de los 
Juanes 

36º55’41.7’’N; 
2º45’1.7’’W 

April 2005-  
December 2007 

1600 

Closed 
shrubland 

Festuca scariosa, 
Genista pumila, 
Hormatophiylla 

spinosa 

326 31 13 -7  

 

Water vapor fluxes were measured at each site using eddy covariance (EC) systems 

consisting of a three axis sonic anemometer (CSAT3, Campbell Scientific Inc., USA) for wind 

speed and sonic temperature measurement and an open-path infrared gas analyzer (Li-Cor 7500, 

Campbell Scientific Inc., USA) for variations in H2O density. EC sensors were located above 

horizontally uniform vegetation at 3.5 m at Balsa Blanca and at 2.5 m at Llano de los Juanes (zr 

= 3.5 and zr = 2.5 respectively). Data were sampled at 10 Hz and fluxes were calculated and 

recorded every 30 min. Corrections for density perturbations (Webb et al. 1980) and coordinate 

rotation (Kowalski et al. 1997; McMillen 1988) were carried out in post-processing, as was the 

conversion to half-hour means following Reynolds’ rules (Moncrieff et al. 1997). The slope of 

the linear regressions between available energy (Rn - G) and the sum of the surface fluxes (H + 

LE) for both sites (see Fig. 1) yields a slope ~ 0.8 in Balsa Blanca and ~0.7 in Llano de los 

Juanes. This is consistent with the 20% underestimate found in the FLUXNET network (Wilson 

et al. 2002). 

 

 

Figure 1. Scatterplots of measured λE + H versus Rn - G (=A) for each field site used in this analysis 
(daytime averages). Linear relation and R2 values are shown. In grey line 1:1 for reference. 
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Complementary meteorological measurements were also made at each field site. An NR-

Lite radiometer (Kipp & Zonen, The Netherlands) measured net radiation over representative 

surfaces at 1.9 m height at Balsa Blanca and 1.5 m at Llano de los Juanes. Soil heat flux was 

calculated at both sites following the combination method (Fuchs 1986; Massman 1992), as the 

sum of averaged soil heat flux measured by two flux plates (HFT-3; REBS) located at 0.08 m 

depth, plus heat stored in upper soil measured by two thermocouples (TCAV; Campbell 

Scientific LTD) located at two depths 0.02 m and 0.06 m. Air temperature and relative humidity 

were measured by thermohygrometers located at 2.5 m height at Balsa Blanca field site and 1.5 

m at Llano de los Juanes (HMP45C, Campbell Scientific Ltd., USA). A 0.25 mm resolution 

pluviometer (model ARG100 Campbell Scientific INC., USA) was used to measure precipitation 

at Balsa Blanca and a 0.2 mm resolution pluviometer was used at Llano de los Juanes (model 

785, Davis Instruments Corp. Hayward, California, USA). Soil water content was measured at 

both sites using water content reflectometers (model CS616, Campbell Scientific INC., USA) 

located at 0.04 m depth. Due to the high soil heterogeneity, three randomly located sensors were 

averaged to obtain a representative SWC value at Llano de los Juanes, while at Balsa Blanca one 

sensor located in bare soil was used. All complementary measurements were recorded every 30 

min using dataloggers (Campbell CR1000 and Campbell CR3000 dataloggers, Campbell 

Scientific Inc., USA) and daytime averages were used. 

 

Remotely sensed data 

LAI estimates were level 4 Moderate Resolution Imaging Spectrometers (MODIS) 

products provided by the ORNL-DAAC (http://daac.ornl.gov/): ii) MOD15A (collection 5) from 

the Terra satellite; and ii) MYD15A2 from the Aqua satellite, both with a temporal resolution of 

8 days. The averaged value of LAI reported from MOD15A and MYD15A2 for the 3 km x 3 km 

area centered on each EC tower was computed. Filtering was performed according to MODIS 

quality assessment (QA) flags to eliminate poor quality data which were replaced by the average 

of previous and subsequent values when they were available. It was also checked that the land 

cover class assigned by MODIS for LAI estimation in the study field sites, closed and open 

shrublands, was consistent with the actual vegetation. 

 

 

  



Capítulo 3 

 94 

Model performance evaluation 

Average daytime E measurements were used to validate daily estimates of E derived from 

the PML model run using average daytime micrometeorological data (Cleugh et al. 2007; 

Leuning et al. 2008; Zhang et al. 2010). The measurement datasets were divided into an 

optimization period to estimate locally specific gsx and ω values and a validation period of PML 

model outputs at both field sites (Table 2). The estimation of optimized parameters gsx and ω was 

performed by searching for values that minimized the cost function F for the total sample 

number (N) using the rgenoud package for the R software environment (Mebane and Sekhon 

2009). 

N

EE
F

N

i iobsiest∑ =
−

= 1 ,,
                  (8) 

 

where Eest,i is estimated E for day i and Eobs,i  is observed E for same day. 

 

 
Table 2. Optimization and validation periods used in both field sites. 
Experimental field site Optimization period Validation period 

Balsa Blanca 
18 October 2006 
18 October 2007 

(N=365 days) 

19 October 2007 
31 December 2008 

(N = 440 days) 

Llano de los Juanes 
27 March 2007 

31 December 2007 
(N=279 days) 

4 April 2005 
24 March 2006 
(N = 355 days) 

 

Standarized Major Axis Regression (SMA) type II (Warton et al. 2006) was used for 

comparing daily measurements and model estimates of E during the validation period. SMA 

regression attributes error in the regression line to both the X and Y variables, a method which is 

recommended when the X variable is subject to measurement errors, as is assumed for the EC 

system measurements used in this work. Slope (a), intercept (b) and coefficient of determination 

(R2) computed using SMA regression are reported in XY plots. Mean absolute errors (MAE) 

(Willmott and Matsuura 2005) are used for quantitative evaluation of PML model results, while 

root mean square errors (RMSE) are also presented for comparison with previous works. 

Systematic and unsystematic components of RMSE (Willmott 1982) are also reported. A low 

systematic error indicates that model structure adequately captures the system dynamics (Choler 

et al. 2010).  
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RESULTS 
 

While the two field sites are both Mediterranean drylands with sparse vegetation, the 

temporal pattern in phenology (LAI) is very different. At Balsa Blanca intermittent rainfall 

throughout the year cause SWC and E to fluctuate more than at Llano de los Juanes which has 

distinct wet and dry seasons. The E and SWC patterns at Balsa Blanca are strongly linked 

whereas phenology is the main factor controlling E at Llano de los Juanes (Fig. 2). 

The three methods proposed for estimating f yielded different levels of accuracy for 

estimating daily E. For fSWC, experimental thresholds θmax and θmin at Balsa Blanca were, 0.20 m3 

m-3 and 0.05 m3 m-3 respectively. At Llano de los Juanes, the same values were 0.35 m3 m-3 and 

0.10 m3 m-3 respectively. Using fSWC and fZhang in the PML model resulted in strong 

overestimations of E following heavy rainfall at both field sites (Fig. 2C and D), whereas use of 

fdrying gave closer agreement with observations. All three methods for estimating f overestimated 

E when observed E was lower than 0.2 mm day-1 at Balsa Blanca field site, but systematically 

underestimated E at the beginning of the dry season at Llano de los Juanes mountain site 

coinciding with great part of the growing season (April to July of 2005). Reasons for this are 

discussed in the next section. 
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Figure 2. Time series of (top) 8-day accumulated precipitation (P) in mm, actual soil water content (SWC) in mm3 
water in mm3 soil and 8-day averages of LAI and (bottom) and 8-day averages of observed E and estimated E in mm 
day-1 using fdrying, fSWC and fZhang respectively. 

 

Estimated values of daily E from the PML model are compared to observations at both 

field sites in Figure 3. Using fdrying in the PML model resulted in the best slope (a = 0.98) and 

intercept (b = 0.01) for linear correlation versus observed E, though the coefficient of 

determination (R2 = 0.47) using fdrying is slightly lower than with fSWC (R
2 = 0.54) at Balsa Blanca 

field site. Despite the better correlation achieved using fSWC, this method tends to overestimate E 

values, a problem not found using fdrying. The highest correlation at Llano de los Juanes was again 

obtained using fdrying (R
2 = 0.59), whereas using fSWC and fZhang produced two clusters of high and 

low predictions and hence poor coefficients of determination (R2 = 0.24 and R2 = 0.33, 

respectively). The PML model with fdrying underestimates E at this site when E > 1.10 mm day-1 

(Fig. 3F), resulting in a linear regression slope of 0.79. Figure 2B shows that this site has highly 

seasonal wet and dry periods.  
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Figure 3. Scatterplots of estimated E using fSWC, fZhang and fdrying, respectively versus observed E in 
mm day-1. Grey dashed line is 1:1 line. 
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Table 3. Optimized model parameters and statistic of model 
performance for the whole validation period N= 440 days in 
Balsa Blanca and N = 355 days in Llano de los Juanesa. 
Balsa Blanca fSWC fZhang fdrying 
gsx 0.0097 0.0085 0.0080 

ω N/A N/A 0.137 

MAE 0.32 0.27 0.17 

RMSE 0.41 0.40 0.22 

% syst. error 52 5 18 

% unsyst. error 49 95 82 

Eavg 0.49 ± 0.28 mm day-1 
    
Llano de los Juanes fSWC fZhang fdrying 
gsx 0.0076 0.0098 0.0109 
ω N/A N/A 0.478 
MAE 0.25 0.22 0.17 
RMSE 0.34 0.31 0.24 
% syst. error 40 37 42 
% unsyst. error 61 63 58 
Eavg 0.56 ± 0.35 mm day-1 
  
a Abreviations as follows: gsx, maximum conductance of leaves; ω, 
soil drying speed; MAE, mean absolute error (mm day-1); RMSE, 
root mean square error both (mm day-1); % syst. error, percentage 
of systematic error; % unsyst. error, percentage of unsystematic 
error, Eavg, mean observed value of daily evapotranspiration (mm 
day-1)and N/A, not applicable parameter. 

 

 

Optimized values of gsx were similar for both field sites under the three proposed 

formulations for f (gsx ranging from 0.0076 to 0.0109 m s-1) (Table 3). On the other hand, ω = 

0.137 at Balsa Blanca is considerably lower than ω = 0.478 at Llano de los Juanes, which 

indicates the model requires a faster drying rate for Llano de los Juanes than for Balsa Blanca.  

Additional analysis were performed at Llano de los Juanes site to determine the reasons 

explaining the systematic underestimation of E found during the dry and growing season (April 

to June of 2005). Underestimates of Ec caused by a too low gsx value could be a possible reason. 

To evaluate if underestimates of gsx were being obtained by including in the optimization dataset 

periods showing a very different vegetation activity at this strongly seasonal site (the growing 

and the non-growing season) (Fig. 2), parameters optimizations were performed using specific 

periods (Table 4).  
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Table 4. Estimated model parameters by optimizing using the original optimization period, the 
growing season or the non-growing season a.  

 f estimation method 
Parameter 

 
Optimization  

period 
Dates 

fSWC fZhang fdrying 

gsx  27/March/2007 0.0076 0.0098 0.0109 
ω  

Original 
31/December/2007 N/A N/A 0.4783 

       

gsx  18/April/2007 0.0088 0.0100 0.0105 
ω  

Growing  
Season 5/August/2007 N/A N/A 0.5000 

       
gsx  10/August/2007 0.0015 0.0078 0.0099 
ω  

Not Growing  
Season 22/December/2007  N/A  N/A 0.4343 

a Abreviations as follows: gsx, maximum conductance of leaves; ω, soil drying speed; and N/A, not applicable 
parameter. 

 

 

Estimates of model parameters (gsx and ω) did not significantly differ using different 

optimization periods (Table 4). Only use of optimized parameters for the non-growing season 

using fSWC provided a clearly lower gsx (Table 4). This lower value of gsx generated a better fit of 

model output using fSWC during the non-growing season but very strong underestimates of E for 

the period when vegetation mostly controlled E (Fig. 4). Thus, no practical improvement of 

model performance during the dry and growing season of the validation period was found using 

specific optimization periods (Fig. 4) and similar E underestimates were still found even when 

using model parameters optimized specifically for growing season conditions. This test also 

showed a low sensitivity of optimization to the period used. 
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Figure 4.Time series of 8-day averages of observed E and estimated E 
in mm day-1 using fdrying, fSWC and fZhang respectively using the total 
optimization period (A), the growing season of the optimization period 
(B) or the not growing season (C) for optimization of parameters gsx 
and ω. 
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DISCUSSION 

 

The development of E estimation methods under strongly water-limited conditions is a 

priority (Glenn et al. 2007) and an especially complex problem (Domingo et al. 2011). This 

study evaluated the potential of the PML model to estimate E in sparsely vegetated drylands 

where soil evaporation (Es) is a major component of total E. In this model, energy consumed by 

Es is modulated by the factor f (Eq. 2) which depends on the moisture content of soil near the 

surface (Leuning et al. 2008).  

Despite the dependence of f on soil moisture content, using locally measured soil water 

content data for f = fSWC (Eq. 5) provided unsatisfactory estimates of E using the PML model 

(Table 3). This may be caused by uncertainties determining the experimental threshold values 

θmin and θmax used in Eq. 5. Moreover the differences in accuracy in estimating E using fSWC at the 

two field sites (Fig. 3A and B) were related to functional differences between them. The daily 

pattern of E at our littoral site, Balsa Blanca, was strongly linked to the SWC pattern seen in 

Figures. 2A and C. SWC controls both soil evaporation and transpiration because the dominant 

species, S. tenacissima, is well-adapted to aridity showing opportunistic growth patterns with 

leaf conductance and photosynthetic rate largely dependant on water availability in the upper soil 

layer (Haase et al. 1999; Pugnaire and Haase 1996). This explains the good results obtained 

using fSWC here. At the mountain site, Llano de los Juanes, the pattern in E was more closely 

linked with LAI than SWC (Fig. 2B and D). This was evident from a reduction of the influence 

of Es to evaporation dynamics especially during the dry and growing seasons from April to 

August, where extraction of water by plants from deep cracks and fissures in the bedrock has 

been previously detailed (Cantón et al. 2010). In contrast, during the wet season (November to 

March 2006) using fSWC leaded to an overestimate in E which may be explained by the effect of 

high stoniness and frequent rock outcrops (30-40% rock fragment content) which reduce the 

effective soil surface described by the SWC data. This limited the usefulness of the fSWC method 

in stony soils. A further limitation to regional application was the lack of spatially distributed 

SWC data. 

Use of fZhang in the PML model resulted in strong overestimation of E during periods 

following heavy or continuous rain events and a generally low correlation with observations 

(Fig. 2 and 3). This occurred because Eq. 6 results in fZhang oscillating between 0 and 1 during 

periods of heavy but intermittent rainfall, whereas in reality soil water content decreases 

progressively after rain events. Originally Zhang et al. (2010) used this approach to estimate f 
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over 32-day intervals during which this oscillation effect is less pronounced. They obtained an 

RMSE of 0.56 mm day-1 for a sparsely vegetated savannah site in Australia (Virginia Park) 

where mean annual E was 1.20 mm day-1. Using fZhang resulted in an RMSE of 0.40 - 0.31 mm 

day-1 at our sites, which is a relatively larger error than at Virginia Park, considering that mean 

annual E was 0.49 mm day-1 at Balsa Blanca and 0.56 mm day-1 at Llano de los Juanes. These 

results and Table 3 show that the fZhang method did not improve PML model performance for our 

ecosystems. 

Adoption of the fdrying method (Eq. 7) notably improved PML model performance at both 

sites with relative errors (RMSE of 0.22 - 0.24 mm day-1) which are similar to the relative errors 

obtained by Leuning et al. (2008) and Zhang et al. (2010) for Virginia Park. This method 

outperformed the other two approaches (fSWC and fZhang) at both sites, showing a better capacity to 

describe the gradual drying of soil following rainfall. As a result, E estimated using fdrying did not 

show the strong overestimation obtained with the fSWC and fZhang methods after rainfall (Figs. 2C 

and D). Like fZhang, fdrying shares the advantage of only requiring widely-available precipitation 

and equilibrium evaporation data, with the expense of a single additional parameter ω. With the 

use of fdrying the PML model was able to capture the varying controls on Es at both field sites. The 

optimized value of ω = 0.137 at Balsa Blanca, and thus the soil drying rate, was lower than ω = 

0.478 at Llano de los Juanes. The soil evaporative component at Balsa Blanca thus has a longer 

period of influence on total E than at Llano de los Juanes where the soil dried more quickly. 

Moreover, the importance of infiltration occurring in preferential flows through the abundant 

cracks, joints and fissures, typical of this karstic mountain area pointed out by Cantón et al. 

(2010) and Contreras et al. ( 2006) is characterised well by the high rate of modelled soil drying. 

The stronger phenological control over E, the reduction of effective evaporative soil 

surface due to stoniness and rocky soil features and the importance of infiltration at Llano de los 

Juanes, contribute to Es having a less important role in total E dynamics than at Balsa Blanca. 

This explains the systematically lower percentage errors found in this area because all three 

adapted model versions tested here better capture the system dynamics at Balsa Blanca, where 

soil evaporation plays a more important role that at Llano de los Juanes (Fig. 3).  

The systematic underestimation of E by the PML model at the beginning of the dry season 

observed at Llano de los Juanes (Fig. 2D) using fZhang and fdrying could be caused by Ec or Es 

underestimates. Underestimates of gsx would be the main reason why PML could be 

underestimating Ec. The inclusion in the dataset used for optimization of both, the growing and 

the non-growing seasons, for which a clearly different vegetation activity is expected at this 
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strongly seasonal site (Fig. 2), could produce gsx underestimates. However, tests optimizing 

model parameters using different optimization periods (Table 4) showed consistency for gsx 

optimized values and weak sensitivity to the optimization period used. Therefore underestimates 

of E by the PML model at the beginning of the dry season can be explained by errors in Es 

caused by too low values of fdrying, and fZhang. During this period, the effect of precipitation from 

the preceding wet season (finishing 20 days before our validation period) is not considered by f 

due to the time resolution of both methods for estimating f (16 and 8 days respectively). These 

methods are not able to capture high soil water availability levels resulting from the cumulative 

effect of a long prior wet season. 

Constant model parameter values for gsx and ω were used to test the performance of the 

PML model to estimate E for two dryland ecosystems where vegetation and soil are exposed to 

strong fluctuations of environmental conditions. While use of constant parameter values may 

provide sub-optimal model performance, such simplifications are necessary for regional 

application, with awareness of possible errors associated with the simplifications.  
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CONCLUSIONS 

 

The capacity of Penman-Monteith-Leuning model (PML model) to estimate daily 

evapotranspiration in sparsely-vegetated drylands is demonstrated through the development of 

methods for temporal and spatial estimation of the soil evaporation parameter f. We advance 

Leuning et al. (2008) who found that estimating soil evaporation parameter f as a local time 

constant produced poor results in sparsely-vegetated areas (LAI < 2.5). Out of three proposed 

methods, fdrying showed the best results for PML model adaptation at two experimental sites. This 

method’s results achieved reasonable agreement with EC-derived daily evapotranspiration rates 

bearing in mind the difficulties associated with E-modeling in drylands, where measured E rates 

are especially low, often not exceeding the error range of methods for estimating E from remote 

sensing (Domingo et al. 2011). In modeling the progressive soil drying process after 

precipitation events, the fdrying method avoided the strong overestimates of E obtained with two 

other f estimation approaches, fSWC and fZhang. Nevertheless, the fdrying method showed some 

limitations in its ability to model the soil evaporation rate when this was influenced by high soil 

water availability levels during the growing season from the cumulative effect of a long prior wet 

season at Llano de los Juanes. 

The use of time-invariant parameters for evapotranspiration modeling is a delicate issue in 

drylands and other extreme ecosystems where vegetation and soil are exposed to strong 

fluctuations in environmental conditions. Where a simplifying compromise is required in the 

design of operational and regionally applicable models, we show here that reasonable results can 

be obtained using temporally-constant estimates of gsx and ω in the PML model.  
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ABSTRACT 

 

Improving regional estimates of actual evapotranspiration (LE) in water-limited regions located 

at climatic transition zones is critical. This study assesses an LE model (PT-JPL model) based 

on downscaling potential evapotranspiration according to multiple stresses at daily time-scale in 

two of these regions using MSG-SEVIRI (surface temperature and albedo) and MODIS products 

(NDVI, LAI and fPAR). An open woody savanna in the Sahel (Mali) and a Mediterranean 

grassland (Spain) were selected as test sites with Eddy Covariance data used for evaluation. The 

PT-JPL model was modified to run at a daily time step and the outputs from eight algorithms 

differing in the input variables and also in the formulation of the biophysical constraints 

(stresses) were compared with the LE  from  Eddy Covariance. Model outputs were also 

compared with other modeling studies at similar global dryland ecosystems.   

The novelty of this paper is the computation of a key model parameter, the soil moisture 

constraint, relying on the concept of Apparent Thermal Inertia (fSM-ATI) computed with surface 

temperature and albedo observations. Our results showed that fSM-ATI from both in-situ and 

satellite data produced satisfactory results for LE at the Sahelian savanna, comparable to 

parameterizations using field-measured Soil Water Content (SWC) with R2 greater than 0.80. In 

the Mediterranean grasslands however, with much lower daily LE values, model results were not 

as good as in the Sahel (R2=0.57-0.31) but still better than reported values from more complex 

models applied at the site such as the Two Source Model (TSM) or the Penman-Monteith 

Leuning model (PML).  

PT-JPL-daily model with a soil moisture constraint based on apparent thermal inertia, fSM-ATI 

offers great potential for regionalization as no field-calibrations are required and water vapor 

deficit estimates, required in the original version, are not necessary, being air temperature and 

the available energy (Rn-G) the only input variables required, apart from routinely available 

satellite products. 

 

 
Keywords: evapotranspiration, surface temperature, Priestley-Taylor, thermal inertia, MSG-
SEVIRI, water-limited ecosystems, MODIS 
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INTRODUCCION 

 

Evapotranspiration (or latent heat flux expressed in energy terms, LE) represents 90% of 

the annual precipitation in water-limited regions which cover 40% of the Earth’s surface (Glenn 

et al. 2007). In these regions there is a close link between carbon and water cycles (Baldocchi 

2008) where water availability is the main control for biological activity (Brogaard et al. 2005). 

LE rates also determine groundwater recharge (Huxman et al. 2005) and feedbacks to continental 

precipitation patterns (Huntington 2006). The Sahel and the Mediterranean basin are both located 

in transitional climate regions and are thus expected to be extremely sensitive to climate change 

(Giorgi and Lionello 2008). The land surface is a strong amplifier on the inter-annual variability 

of the West African Monsoon leading to the observed persistency patterns (Nicholson 2000; 

Taylor et al. 2011; Timouk et al. 2009). Therefore, improving estimates of temporal and spatial 

variations of LE is crucial for understanding land surface-atmosphere interactions and to improve 

hydrological and agricultural management (Yuan et al. 2010). 

LE can be estimated at regional scales using remote sensing data. One way is to use models 

based on the bulk resistance equation for heat transfer (Brutsaert 1982), relying on the difference 

between surface temperature (TR) and air temperature (Ta) and the aerodynamic resistance to 

turbulent heat transport. In this case, LE is estimated indirectly as a residual of the surface energy 

balance equation (Anderson et al. 2007; Chehbouni et al. 1997). This approach circumvents the 

problem of estimating soil and canopy surface resistances to water vapor, needed to compute LE, 

that tend to be more critical in LE modeling than aerodynamic resistances in dryland regions 

(Verhoef 1998; Were et al. 2007). In those regions, two-source models treating the land surface 

as a composite of soil and vegetation elements with different temperatures, fluxes, and 

atmospheric coupling provide better results than single-source models (Anderson et al. 2007). 

However, despite the strong physical basis of two-source models (Kustas and Norman 1999; 

Norman et al. 1995) their spatialization is difficult because the task of estimating aerodynamic 

resistances at instantaneous time scales is not trivial, requiring knowledge about atmospheric 

stability, several vegetation and soil parameters as well as meteorological data (Fisher et al. 

2008). Further complications arise from the partition of TR between soil and vegetation (Kustas 

and Norman 1999) because the radiative surface temperature differs from the aerodynamic 

surface temperature especially over sparsely vegetated surfaces (Chehbouni et al. 1997). 

A second group of models using remote sensing data directly solve the LE term using the 

Penman-Monteith (PM) combination equation. In this case, LE can be partitioned into soil and 
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vegetation components (Leuning et al. 2008). With this approach, the challenge is to characterize 

the spatial and temporal variation in surface conductances to water vapor without using field 

calibration (Zhang et al. 2010). A simple way to estimate surface conductances is to use 

prescribed sets of parameters based on biome-type maps (Zhang et al. 2010). Other approaches 

perform optimization with field data but can lead to a lack of estimates over vast regions of the 

globe, such as the Sahel, due to the scarcity of field measurements (Yuan et al. 2010). One of the 

first attempts to characterize surface conductance without optimization proposed an empirical 

relationship with LAI derived from MODIS (Moderate Resolution Imaging Spectroradiometer) 

(Cleugh et al. 2007). Mu et al. (2007; 2011) refined this approach using the empirical 

multiplicative model proposed by Jarvis (1976) estimating moisture and temperature constraints 

on stomatal conductance and upscaling leaf stomatal conductance to canopy. Alternatively, 

Leuning et al. (2008) used a biophysical model for surface conductance based on Kelliher et al. 

(1995) method. However, this method required optimization with field data for gsx, the maximum 

stomatal conductance of leaves, and for the soil water content. As both parameters were held 

constant along the year LE was overestimated at drier sites. To address this shortcoming, Zhang 

et al. (2008) introduced a variable-soil moisture fraction dependent on rainfall, and optimized gsx 

using outputs from an annual water balance model or a Budyko-type model (Zhang et al. 2008; 

2010). Although this represented a step-forward for operational applications, results at dry sites 

were still poorer than at more humid sites (Zhang et al. 2008; 2010).  

A solution to overcome those parameterization problems using the Penman-Monteith 

equation, was the simplification proposed by Priestley and Taylor (1972) (PT) for equilibrium 

evapotranspiration over large regions by replacing the surface and aerodynamic resistance terms 

with an empirical multiplier αPT (Zhang et al. 2009). The PT equation is theoretically less 

accurate than PM although uncertainties in parameter estimation using PM can results in higher 

errors (Fisher et al. 2008). Fisher et al. (2008) proposed a model based on PT to estimate 

monthly actual LE. The authors used biophysical constraints to reduce LE from a maximum 

potential value, LEp, in response to multiple stresses. One advantage of this approach is that it 

does not require information regarding biome-type or calibration with field data. The modeling 

framework can be seen as conceptually similar to the so-called Production Efficiency Models 

(PEM) for estimating GPP (Gross Primary Productivity) (Houborg et al. 2009; Monteith 1972; 

Potter et al. 1993; Verstraeten et al. 2006a;) where maximum light use efficiency of conversion 

of absorbed energy fAPAR into carbon is reduced below its maximum potential due to 

environmental stresses. In fact, part of the formulation from the PT-JPL model has been 
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introduced into some PEM models (Yuan et al. 2010).The main model assumption is that plants 

optimize their capacity for energy acquisition in a way that changes in parallel with the 

physiological capacity for transpiration (Fisher et al. 2008; Nemani and Running 1989). This 

idea is to some extent related to the hydrological equilibrium hypothesis stating that in water-

limited natural systems, plants adjust canopy development to minimize water losses and 

maximize carbon gains (Eagleson 1986) but applied over shorter time-scales. The modeling 

approach described above neglects the behavior of individual leaves and considers the canopy 

response to its environment in bulk for which it can be refer to as a top-down approach (Houborg 

et al. 2009). Top-down approaches use simpler scaling rules compared to bottom-up models that 

require detailed mechanistic descriptions of leaf-level processes up-scaled to the canopy 

(Schymanski et al. 2009). Although top-down approaches require less parameters than bottom-up 

approaches, they are subjected to a higher degree of empiricism with high uncertainty on the 

functional responses of ecosystem processes to environmental stresses (Yuan et al. 2010).  

The use of global satellite vegetation products and meteorological gridded databases as 

input to top-down approaches based on the PM or the PT equations has made possible to obtain 

regional estimates of evapotranspiration (Mu et al. 2007). However, there are still limitations 

regarding the use of such databases. One hand, existing global climatic data sets interpolated 

from observations such as the Climatic Research Unit data set (CRU, University of East Anglia) 

are available on a monthly but not a daily basis (New et al. 2000). Moreover, data from 

reanalyses such as ECMWF (European Centre for Medium-Range Weather forecasts) or 

NCEP/NCAR present coarse spatial resolutions (≈1.25º) (Mu et al. 2007) being desirable to 

minimize the use of climatic data when possible. 

On the other hand, PM and PT satellite-based approaches have taken advantage of optical 

remote sensing data to estimate vegetation properties but thermal remotely sensed data has been 

used only marginally and with coarse spatial resolution data such as the microwave AMSR-E at 

0.25º (Miralles et al. 2011). Incorporation of  long-wave infrared thermal data at spatial 

resolutions of 1-3 km available from the MODIS (Moderate Resolution Imaging 

Spectroradiometer) or the SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensors 

could help to track changes in surface conductance (Berni et al. 2009; Boegh et al. 2002), soil 

evaporation (Qiu et al. 2006), surface water deficit (Boulet et al. 2007; Moran et al. 1994) or soil 

water content (Gillies and Carlson 1995; Nishida et al. 2003; Sandholt et al. 2002). In relation to 

soil moisture a promising approach is the mapping of soil moisture based on soil thermal inertia 
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(Cai et al. 2007; Sobrino et al. 1998; Verstraeten et al. 2006b), following the early work of Price 

(1977) and Cracknell and Xue (1996). 

The objective of this work was to adapt and evaluate a daily version of the PT-JPL model 

and introduce a new formulation for soil moisture based on the thermal inertia concept. The aim 

is to minimize the need for climatic reanalyses data by incorporating thermal remote sensing 

information in order to facilitate future model regionalization. The PT-JPL model in its original 

formulation has proven to be successful over 36 FLUXNET sites at monthly time scales, ranging 

from boreal to temperate and tropical ecosystems. However, none of those included semiarid 

vegetation with annual rainfall below 400 mm (Fisher et al. 2008; 2009). Model performance 

using in-situ and satellite data was compared with field data from Eddy Covariance systems at 

two semiarid sites: an open woody savannah in the Sahel (Mali) and Mediterranean tussock 

grassland (Spain). Finally, to place the results in the context of global drylands, model results 

were compared to published results from similar models using remote sensing at dryland savanna 

and grasslands sites across the globe. 

 

FIELD SITES AND DATA  
 

Two field sites (Fig. 1) have been used to test the model in semiarid conditions: an open 

woody savannah in Mali and tussock grassland in Spain. A general description of the sites is 

included in Table 1.  

 

Table 1. General characteristics of the two instrumented field sites in the Sahel region and in the Mediterranean 
basin.  

Site name 
(location) 

Vegetation 
type 

Mean annual 
rainfall 

Soil type 
Dominant herbaceous 

species 
Dominant woody 

species 
Agoufou 
(Mali) 
(15.34°N, 
1.48°W) 

Open woody 
savannah 

375 mm 
Fixed 
dunes-

Arenosol 

Cenchrus biflorus, 
Aristida mutabilis, 
Zornia glochidiata, 

Tragus berteronianus 

Acacia raddiana,  
Acacia senegal, 
Combretum glutinosum, 
Balanites aegyptiaca, 
Leptadenia 
pyrotechnica 

      

Balsa 
Blanca 
(Spain) 
(36.94°N, 
2.03°W) 

Tussock 
grassland 

370 mm 

Calcium 
crusts-
Mollic 
leptosol 

Stipa tenacissima Thymus hyemalis, 
Chamaerops humilis L., 
Brachypodium retusum 
(Pers.) P. Beauv, Ulex 
parviflorus 
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Figure 1: Location of the two study sites: an open woody savanna (15.34°N, 1.48°W) in the Sahel (Mali) and 
Mediterranean tussock grassland (36.94°N, 2.03°W) in Spain. The map with Köppen-Geiger climate classes 
(Kottek et al. 2006) overlaps country boundaries. The Mediterranean site presents Cold semiarid climate 
(BSk) and the Sahelian site Arid/desert/hot climate (BWh).  

 

Sahelian Open Woody Savannah site 

The Agoufou site is an open woody savannah, homogeneous over several kilometers, with 

trees representing less than 5% of vegetation cover. A comprehensive description of the site is 

provided by Mougin et al. (2009). The top 0–0.06 m of the soil is 91% sand, 3.3% silt and 4.6% 

clay (de Rosnay et al. 2009). The region experiences a single rainy season with most 

precipitation falling between late June and mid September followed by a long dry season of 

around 8 months.  

In-situ data for the 2007 growing season were provided by the African Monsoon 

Multidisciplinary Analyses (AMMA) project. Sensible heat flux was measured with sonic 

anemometers (CSAT) measuring the three vector components of the wind at 20 Hz. Latent heat 

fluxes were measured with the Eddy Covariance system (logger CR3000, anemometer CSAT3 

and IRGA LiCor7500, Campbell Scientific Inc. and Li–Cor Inc., USA). The four components of 

the net radiation were measured with a CNR1 (Kipp and Zonen CNR1, Delft, Holland).  



Capítulo 4 

 116 

Measurement height for the flux sensors are 2.2 m. Soil heat fluxes were computed from 

soil temperature measurements. See Timouk et al. (2009) for more details. Wind speed and 

direction (Vector A100R), land surface temperature (Everest 4000.4zl), air temperature and 

humidity (HMP 45C, Vaisala) and precipitation (Delta T, RG1) were also measured. Time 

domain reflectometry sensors (CS616, Campbell Scientific Inc., USA) measured volumetric Soil 

Water Content at several depths with the shallower probe, the one used in this work, located at 

0.05 m. 

Leaf area index (LAI) and fractional cover were monitored approximately every 10 days 

during the 2007 growing season (DOY 184 to 269) along a 1 km long vegetation transect using 

hemispherical photographs. LAI was validated using destructive measurements (Mougin et al. 

2009). Comparisons with MODIS LAI during three years produced R2=0.82 and RMSE 0.26 

(Mougin et al. 2009). The fraction of vegetation cover is 50%, with a maximum average height 

of 0.4 m for the herbaceous cover. A period starting prior and finishing after the rains was 

evaluated (DOY 170 to 315). No gap filling has been performed. Gaps in flux data are present 

notably in late July to early August (Fig. 2). 

 

Mediterranean grassland site 

Balsa Blanca site is a tussock grassland steppe dominated by Stipa tenacissima L. (91% 

cover) located within the “Cabo de Gata-Níjar Natural Park” (Spain) the only subdesertic 

protected region in Europe, with a semiarid Mediterranean climate. Annual rainfall is highly 

variable from year to year with mean values of 375 mm and mean annual temperature of 18.1 ºC. 

In the closer long-term station the average was 200 mm (records from the closest meteorological 

station, Nijar, distant 30 km) (Rey et al. 2012) with rainfall falling mostly in fall and winter and a 

prolonged summer drought. The fraction of vegetation cover is 60%, with mean average height 

of 0.7 m. The soil is classified as Mollic Leptsol (WRB) (World Reference Base for Soil 

Resources, FAO 1998) with depth ranging from 0.15 to 025 m. 

In-situ data were acquired during the 2011 growing season between January and June. This 

period should capture most of the annual variability in LE although it is only part of a complete 

growing season that starts in fall until early summer (Fig. 2). Latent and sensible heat fluxes 

were measured with respective Eddy Covariance (EC) systems (logger CR3000, anemometer 

CSAT3 and IRGA LiCor7500, Campbell Scientific Inc. and Li–Cor Inc., USA). The 

measurement heights were 3.5 m. Sensors measured at 10 Hz and fluxes were estimated and 
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stored half-hourly applying the corrections for axis-rotation (Kowalski et al. 1997; Mcmillen 

1988) and density fluctuations (Webb et al. 1980).  

Net radiation was obtained using NR-Lite (Kipp&Zonen). Four soil heat flux plates 

(HFP01SC; Campbell Sci. Inc.) were placed at 0.08 m depth, two under plant and two under bare 

soil, and connected via multiplexer to a datalogger. The soil heat flux at the surface was 

determined by adding the measured heat flux at 0.08 m (G) to the energy stored in the layer 

above the heat plate estimated from soil temperature and soil moisture measurements. Soil 

temperature was measured using soil thermocouples (TCAV) at 0.02 and 0.06 m depth adjacent 

to the heat flux plates. Land surface temperature was measured with three Apogee sensors over 

bare soil, vegetation, and a composite of bare soil and vegetation, (IRTS-P). Air temperature and 

relative humidity were measured with thermohygrometers (HMP45C, Campbell Scientific Ltd.). 

Rainfall was measured using a tipping bucket rain gauge of 0.25 mm of resolution (ARG100 

Campbell Scientific INC., USA). Time domain reflectometry sensors (CS616, Campbell 

Scientific Ltd) measured Volumetric (m3 m-3) soil water content (SWC) under bare soil and 

under plants with 0.04 m being the top most measured soil moisture. 

Figure 2 shows the seasonal dynamics for volumetric soil water content, expressed in % 

(SWC), rainfall (mm), evapotranspiration (LE) in W m-2, and NDVI for the two study sites.  

 

 

 
Figure 2: Volumetric soil water content % (SWC), rainfall (mm), evapotranspiration (LE) in W m-2, and NDVI dynamics 
during the periods of analyses in the Sahelian savanna (Agoufou) in 2007 and in the Mediterranean grasslands (Balsa 
Blanca) in 2011. SWC probes were located at 0.05 m and 0.04 m depth respectively. 
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Satellite Data 

NDVI data were acquired from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Terra and Acqua sensors products MOD13Q1 and MY13Q1 (collection 5) over the 

two study sites. This product consists of 16-day composites of 250 m pixel (Huete et al. 2002). 

LAI and fPAR products from Terra and Acqua (MOD15A2, MY15A2) consisting of 8-day 

composites of 1 km pixel (collection 5) (Myneni et al. 2002) were acquired as well. To get daily 

estimates a linear interpolation using both Terra and Acqua values was performed within the 8-

day or 16 day interval in each case. 

Land Surface Temperature (LST) and broadband surface albedo (α) products used in this 

work were developed by the Satellite Application Facility for Land Surface Analysis (LSA SAF) 

with data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer, 

onboard of the MSG (Meteosat Second Generation). The MSG-SEVIRI sensor includes 12 

separate channels and 15 min temporal resolution making it attractive for applications requiring 

intra-daily information. As for any geostationary satellite the trade-off is the low spatial 

resolution of 4.8 km at nadir (spatial sampling is 3 km) and large view angles (Schmetz et al. 

2002). The LST algorithm is based on a generalized split window, following (Wan and Dozier 

1996) formulation adapted to SEVIRI data (Trigo et al. 2008). It requires information on clear-

sky conditions and TOA brightness temperatures for the split-window channels 10.8 mm and 

12.0 mm. Channel and broadband emissivity is estimated as a weighted average of that of bare 

ground and vegetation elements within each pixel using the fraction of vegetation cover derived 

from NDVI (Trigo et al. 2008). The albedo product is based on short-wave channels at 0.6, 0.8 

and 1.6 µm. It has an effective temporal scale of 5 days and updated on a daily basis using cloud-

free reflectance observations that are corrected for atmospheric effects using the simplified 

radiative transfer code SMAC (Geiger et al. 2008). Dynamic information on the atmospheric 

pressure and total column water vapor comes from the European Centre for Medium-range 

Weather Forecasts (ECMWF) NWP model. Cloud identification and cloud type classification are 

used in the processing of all LSA SAF products. 
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METHODS  
 
PT-JPL-daily Model Description  

The daily model proposed here (hereafter PT-JPL-daily) is a modified version of the 

algorithm described in Fisher et al. (2008) where LE is partitioned into canopy transpiration 

(LEc) and soil evaporation (LEs) (Eq. 1). In this paper, we did not consider interception 

evaporation (LEi), or evaporation from a wet canopy surface, as in low LAI ecosystems it 

accounts for a limited amount of the total water flux (Mu et al. 2011) and in turn using it requires 

observations of relative humidity at the sites. However, preliminary model evaluations showed 

that including it did not improve or worsen the results. 

Actual LE is calculated based on potential evapotranspiration of soil (LEps) and canopy 

(LEpc) which are reduced from their potential level using different constraints (multipliers) based 

on plant physiological status and soil moisture availability (Fisher et al. 2008). LEp was 

calculated using (Priestley and Taylor 1972) equation. 

sc LELELE +=                                         (1) 

Three plant physiological constraints were considered to regulate evapotranspiration: green 

canopy fraction, a plant temperature constraint (fT) and a plant moisture constraint (fM) (Eq. 2).  

cMTgc LEpfffLE =                                         (2) 

All the equations and variables are described in Table 2. Considering that the physiological 

capacity for energy acquisition should be adjusted with the capacity for transpiration, the green 

canopy fraction, that represents the canopy fraction actively transpiring, should reflect an upper 

limit for transpiration. fg was estimated as the ratio between intercepted and absorbed 

photosynthetic active radiation fAPAR/fIPAR (Table 2). The original model formulation for 

estimating LAI and fAPAR using NDVI and the extinction of radiation equation (Table 2) was used 

as well as new estimates of LAI and fAPAR derived from MODIS standard products.  

The plant temperature constraint (fT) accounts for reductions in photosynthetic efficiency 

when plants grow at temperatures departing from their optimum temperature range (Potter et al. 

1993). fT depends on the optimum air temperature for plant growth Topt (°C) and Tam (°C) the 

average daily temperature. In the original model, Topt was assumed to coincide with maximum 

canopy activity and was estimated as the air temperature of the month with the highest NDVI and 

radiation and minimum vapor pressure deficit (VPD) (June et al. 2004). However, this approach 

in Mediterranean semiarid environments is prone to unrealistic Topt values due to the decoupling 
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between warm and rainy seasons, with the maximum peak for vegetation activity occurring in 

late winter (García et al. in review). In a preliminary evaluation we observed that the fT from the 

Carnegie-Ames-Stanford Approach model (CASA) performed better. In the CASA model fT has 

an asymmetric bell shape reflecting a higher sensitivity to high than to low temperatures (see 

Table 2 for equations) (Potter et al. 1993). To avoid calibrations of Topt depending on the site, we 

fixed Topt in 25ºC, a value that has been applied in global modeling studies across different type 

of biomes (Yuan et al. 2010). We checked in preliminary analyses that variations of ±5 °C 

around this value of Topt did not affect model outputs. 

The third constraint for LEc was a plant moisture constraint, fM, defined as the relative 

change in light absorptance with respect to the maximum (fAPAR/fAPARMax). This approach assumes 

that plant absorptance decreases mostly due to moisture stress (Fisher et al. 2008). 

The soil evaporation component was constrained by a soil moisture limitation, fSM (Eq. 3).  

sSMs LEpfLE =                                                     (3) 

In this work, we evaluated an fSM estimate based on the thermal inertia (TI) concept using 

TR and albedo. Thermal inertia is a physical property of soil at the land surface measuring the 

thermal response of a material to the changes in its temperature (Nearing et al. 2012). The higher 

the TI the lower its diurnal temperature fluctuation. Estimating thermal inertia requires knowing 

thermal conductivity of the material (K), its density (ρ) and specific heat (C) (Price 1977).  

Increasing soil moisture content modifies soil thermal conductivity and reduces the diurnal 

surface temperature fluctuation (Verstraeten et al. 2006b). In early studies, this diurnal TR 

variation was linked theoretically to thermal inertia resulting in the apparent thermal inertia (ATI) 

index (Price 1977). Estimating thermal inertia using remote sensing was first introduced by Price 

(1977) and expanded by Cracknell and Xue (1996), Sobrino et al. (1998) and Lu et al. (2009). In 

this study we estimated ATI following Verstraeten et al. (2006b) which was based on Mitra and 

Majumdar (2004) (see Eq. 4). ATI relies on broadband albedo (α), and the difference between 

maximum daytime (TRDMax) and minimum nightime (TRDmin) surface temperature, and a solar 

correction factor C (equation 5) that normalizes for changes in solar irradiance with latitude,ϑ  

and the solar declination angle ϕ, the angle between sun rays and the plane of the Earths´s 

equator. It is assumed that ATI reflects both soil and canopy water content if the TR includes both 

soil and vegetation components (Tramutoli 2000; Verstraeten et al. 2006b). In fact, a composite 

TR might track better changes in root-zone SWC as the canopy temperature responds rapidly to 

changes in root zone SWC, which can be decoupled from the bare soil surface SWC. From the 15 
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minute TR data the minimum (TR-Dmin) and maximum (TR-DMax) values from each day were 

extracted. Observations flagged as cloudy in the METEOSAT LST data and days when the 

midday observation was missing were excluded from the analyses. A smoothing procedure 

averaging with the prior and following day was applied to the ATI assuming that the soil 

moisture conditions could be interpolated between subsequent days and to remove noise. 

min

1

DRDMaxR TT
CATI

−− −
−= α                                        (4) 

)tantanarccos(coscos)tantan(sinsinC ϕϑϕϑϕϑϕϑ ⋅−⋅⋅+⋅−⋅= 221                                  (5) 

 

Whereϑ is latitude, and ϕ solar declination estimated using the method of (Iqbal 1983). 

However, the coupling between ATI and soil moisture is not straightforward. Thermal 

inertia could be converted directly to soil moisture provided soil properties are known (Lu et al. 

2009; Minacapilli et al. 2009; Van doninck et al. 2011). Since those properties only change over 

geologic time scales, short-term changes in ATI can be linked to changes in soil moisture using 

time-series (Van Doninck et al. 2011). Verstraeten et al. (2006b) related soil moisture to 

remotely sensed ATI derived from METEOSAT imagery by assuming that the minimum and 

maximum seasonal ATI (ATImin and ATIMax) correspond to residual and saturated soil moisture 

contents obtaining fSM-ATI (see equation in Table 2).  

To evaluate fSM derived from ATI two additional formulations of fSM used in the original 

model formulation have been also tested (see Table 2).The first is based on field measurements 

of volumetric soil water content (SWC) (fSM-SWC), where SWC was rescaled between a minimum 

(SWCmin) and a maximum value (SWCMax) (Fisher et al. 2008). In our case, SWCmin was 

estimated as the minimum value of the dry season. SWCMax was estimated as the value of SWC in 

the 24 hours after a strong rainfall event, which can be considered as an estimate of the field 

capacity. If SWC > SWCMax then fSM- SWC =1. In the Mediterranean site, the 2006-2011 period was 

used to extract SWCmin and SWCMax as the period used to apply PT-JPL-daily was not a complete 

season.  

The second approach to estimate fSM was the original PT-JPL model formulation based on 

the link between atmospheric water deficit and soil moisture (fSM-Fisher) (Bouchet 1963; Morton 

1983). This link is compromised if the vertical adjacent atmosphere is not in equilibrium with the 
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underlying soil (Fisher et al. 2008). The β parameter indicates the relative sensitivity of soil 

moisture to VPD (see Table 2). 

 

 

Table 2: Equations and variables involved in estimating PT-JPL-daily model biophysical constraints, plant variables and 
energy variables. fAPAR  is the fraction of Absorbed Photosynthetically Active Radiation, fIPAR the fraction of intercepted 
photosynthetically active radiation,  Topt is optimum temperature for plant growth (25 °C), Tam (daily mean air temperature, 
°C), fAPARMAX is maximum fAPAR, SWC, Soil Water Content (m3m-3), RH is relative humidity (%), VPD is the vapor pressure 
deficit (kPa), ATI is the observed apparent thermal inertia index (°C-1), ATImin is the seasonal minimum ATI, ATIMAX is the 
seasonal maximum ATI. Rn is daily net radiation (Wm-2). Values for parameters: kRn=0.6 (Impens and Lemeur 1969); 
kPAR=0.5 (Brownsey et al. 1976); m1=1.16; b1=-0.14; (Myneni and Williams 1994); m2=1.0; b2==-0.05 (Fisher et al. 2008), γ 
(psychrometric constant)= 0.066 kPaC-1; β=1kPa, αPT =1.26 Priestley -Taylor coefficient; ∆ is the slope of the saturation-to-
vapor pressure curve (PaK-1). In the reference column it has been added original model for the cases when the formulation 
was used in Fisher et al. (2008) or this study if the formulation has been implemented in this study.  
 Variable Description Equation Reference 

fg Green canopy fraction  
IPAR

APAR

f

f
fg =   Fisher et al. (2008) 

original model 

fT Plant temperature constraint 
( )[ ]

( )[ ] 1103.0

1102.0

1

11814.1
−−−−

−−−⋅

+

+⋅=
mopt

mopt

TaT

TaT

T

e

ef  Potter et al. (1993) this 
study 

fM Plant moisture constraint 
APARMax

APAR
M f

f
f =  Fisher et al. (2008) 

original model 










−
−

−=
minMax

min
 SWC-SM SWCSWC

SWCSWC
f 1  Fisher et al. (2008)  

original model 

β/VPD
FisherSM RHf =−  Fisher et al. (2008)  

original model 

Biophysical  
constraints 

fSM 
  
  

Soil moisture constraint 
  
  










−
−

=−
minMax

min
ATISM ATIATI

ATIATI
f  Verstraeten et al  

(2006b) this study 

11 bNDVImf NDVIAPAR +⋅=−
 Myneni and Williams 

(1994) original model fAPAR  
PAR fraction absorbed by  
green vegetation  
  MODISAPAR

f
−

 Myneni et al. (2002)  
this study 

fIPAR 
 

PAR fraction intercepted  
by total vegetation  
 

22 bNDVImf IPAR +⋅=  Fisher et al. (2008)  
original model 

fc fractional vegetation cover fc =fIPAR 
Campbell and Norman 
(1998) original model 

PARNDVI kfcLnLAI /)1( −−=  
Norman et al. (1995); 
Ross (1976) original 
model 

Plant 
variables 

LAI 
  

Leaf Area Index 
  

LAIMOD1S 
Myneni et al. (2002)  
this study 

Rns   Net radiation to the soil )LAIk(
s

RneRnRn −⋅=  
Norman et al. (1995); 
Ross (1976) original 
model 

LEpc   
Priestley-Taylor potential  
evapotranspiration for canopy 

)( sPTc RnRnLEp −
+∆
∆=

γ
α  Norman et al. (1995) 

original model 

Energy 
 variables 

LEps   
Priestley-Taylor potential  
evapotranspiration for soil 

)( GRnLEp sPTs −
+∆
∆=

γ
α  Norman et al. (1995) 

original model 
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Global sensitivity analyses (EFAST) approach 

Sensitivity analysis can be used to evaluate the effects of uncertainty on input or 

parameters on model output or to evaluate which variables or parameters have the largest effect 

on model output (Matsushita et al. 2004). In this study Global Sensitivity Analysis (GSA) of PT-

JPL-daily model was performed using Extended Fourier Amplitude Sensitivity Test (EFAST) 

(Saltelli et al. 1999). EFAST was originally developed by Cukier et al. (1978) and improved by 

Saltelli et al. (1999). The advantage of EFAST compared to traditional sensitivity analyses such 

as one-at-a-time (OAT) or experimental design (ED) is that it allows several input variables to 

vary simultaneously considering interactions among them. It can be used for non-linear and non-

monotonic models providing similar results to more complex methods based as well on analyses 

of variance but being computationally more efficient (Saltelli et al. 1999). A Fourier 

decomposition is used to obtain the fractional contribution of the individual input factors to the 

variance of the model prediction (Campolongo et al. 2000). 

To identify the relative importance of each model input in terms of its contribution to the 

output variance of daily evapotranspiration, perturbations for each variable were applied around 

the mean value of the growing season and also around mean monthly values. Rn, G, NDVI and 

Ta were varied by ±10% around their monthly means and annual mean based on reported 

uncertainty of field measurements for those variables (Garcia et al. 2008). For the constant 

model parameters: m1, b1, m2, b2, kRn, and kPAR, the range of uncertainty was based on values 

used in the literature (Table 3). A perturbation of ±25% around the mean was considered for the 

soil moisture constraint (fSM) and the plant temperature constraint (fT). 

 

Table 3: Ranges of variation for input parameters and variables in PT-JPL-daily model. For Rn, G, NDVI and 
Ta   ranges of ± 10% around monthly means and annual mean was considered. For the constant model 
parameters: m1, b1, m2, b2, kRn, and kPAR, the range of uncertainty was based on values used in the literature. For 
the soil moisture constraint (fSM) and the plant temperature constraint (fT) a range of ± 25% around the mean 
was considered. Description of variables and parameters can be found in Table 2. 
Input var Range Reference 
Ta ±10% of mean value This study 
Rn ±10% of mean value This study 
G ±10% of mean value This study 
fT ±25% of mean value This study 
fSM ±25% of mean value This study 
NDVI ±10% of mean value This study 
m1 [1.16, 1.42] 
b1 [-0.039, -0.025] 

This study 
This study 

m2 [0.9, 1.2] 
b2 [-0.06, -0.04] 

Fisher et al. (2008) 
Fisher et al. (2008) 

kRn [0.3, 0.6] Ross (1976) 
kPAR [0.3, 0.6] Ross (1976) 
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Evaluation of the PT-JPL-daily evapotranspiration model  

PT-JPL-daily was run using a combination of field and remotely-sensed data as inputs to 

parameterize the biophysical constraints and partition the energy between soil and canopy (Table 

4). Two versions (the original version and one version using MODIS products) of LAI and fAPAR 

were tested which modify two of the plant constraints fg , and fM as well as the energy partition 

between soil and vegetation (Table 2). In addition, three versions of fSM were used as explained 

in the model description Section (Table 2). Model results were compared with LE from Eddy 

Covariance fluxes and the coefficient of determination (R2), Mean Average Error (MAE), the 

bias, the RMSE (Root Mean Square Error) and MAPE (Mean Absolute Percentage Error) were 

used as indicators of model performance. To compare modeled LE with LE measurements from 

Eddy Covariance the energy balance from the Eddy Covariance data should be forced to zero 

(Twine et al. 2000).  We used the criteria of preserving the Bowen ratio that assumes that the 

Bowen ratio (H/LE) is well measured by the EC system and the closure error is proportionally 

distributed into LE and H (Twine et al. 2000). 

The evaluation results (R2, errors and biases) are presented in four steps. First, model 

performance using measured soil moisture constraint (fSM-SWC) was analyzed. Here, the accuracy 

of the two different versions for LAI and fAPAR was compared as, in principle, this model version 

using fSM-SWC should be the most precise from the point of view of soil moisture constraint and 

can be used as a benchmark. In the second step, the feasibility of using fSM–Fisher, from 

atmospheric variables at daily time-scale in semiarid conditions was evaluated. In the third step, 

the performance of the model run with the apparent thermal inertia index fSM –ATI from in-situ and 

also satellite data was evaluated. In these three steps the two versions for estimating LAI and 

fAPAR were evaluated as well resulting in a total of eight algorithm versions evaluated (see Table 

4). Finally, to place model results in the context of global drylands, our accuracy results were 

compared to published accuracy results from other models that used remote sensing information 

at the same and at other dryland savanna and grasslands sites across the globe. In those cases 

when model outputs were provided by the authors at 30 minutes time step, they where 

aggregated at daily time scale and compared with the eddy covariance data to have comparable 

statistics. 
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Table 4: Eight versions of PT-JPL-daily (FD) were run based on different combinations of equations and 
data used for the variables: fSM, fIPAR and LAI. Rn is Net radiation (Wm-2), G is soil heat flux (Wm-2), Ta, 
air temperature (°C), SWC, Soil Water Content (%), VPD, Vapor pressure deficit (kPa), RH, Relative 
humidity (%), TR, Surface temperature (°C), LAI (Leaf Area Index), fPAR (fracion of Photosyntetic Active 
Radiation) and α broadband surface albedo. The soil moisture constraints used were: fSM-SWC (from 
measured volumetric soil water content), fSM-Fisher (from atmospheric water deficit), and fSM-ATI (from 
apparent thermal inertia). Two different fAPAR and LAI were used (a) fAPAR-NDVI  and LAINDVI  (FDa model 
versions) and (b) used fAPAR-MODIS and LAIMOD1S (in FDb model versions). All equations are described in 
Table 2. 

fSM 
 

fAPAR and LAI 
 

Common 
variables Algorithm 

version 
Algorithm 
name 

estimate data/source estimate Data/source Data/source 

1 FDaSWC 
fAPAR-NDVI 

LAINDVI 
NDVI/MODIS 

2 FDbSWC 
fSM-SWC 

SWC/in-situ 
 fAPAR-MODIS 

LAIMOD1S 
fPAR, 

LAI/MODIS 

3 FDaFisher 
fAPAR-NDVI 

LAINDVI 
NDVI/MODIS 

4 FDbFisher 
fSM-Fisher 

VPD, 
RH/in- situ 

 fAPAR-MODIS 

LAIMOD1S 
fPAR, 

LAI/MODIS 

5 FDaATI-in situ 
fAPAR-NDVI 

LAINDVI 
NDVI/MODIS 

6 FDbATI-in-situ 

Ts, α/in-situ 
 fAPAR-MODIS 

LAIMOD1S 
fPAR, 

LAI/MODIS 

7 FDaATI-MSG 
fAPAR-NDVI 

LAINDVI 
NDVI/MODIS 

8 FDbATI-MSG 

fSM-ATI 

Ts, α//MSG fAPAR-MODIS 

LAIMOD1S 
fPAR, 

LAI/MODIS 

Rn, G, Ta/in-situ 
 

NDVI/MODIS 
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RESULTS AND DISCUSSION  
 
Global Sensitivity Analyses (EFAST) approach 

Considering the variability around mean annual conditions, the contribution to uncertainty 

was less than 20% for most parameters and variables in the Sahelian savanna. The greatest 

uncertainty was due to two of the biophysical constraints: fSM and fT with 22.19% and 17.68 % 

respectively (total effect). Five other variables involved in LAI estimation and energy partition 

between soil and canopy contributed around 12% to model uncertainty (Fig. 3). However, the 

relative importance of each variable depends on the time of the year. At the beginning of the 

season, LE was most sensitive to accuracy in fSM reaching the maximum value of explained 

variance among all variables and months (40%). During the maximum peak of NDVI, in the 

middle of the season, the greatest sensitivity was due to fT, and m1 (involved in fM and fg 

estimates via fAPAR). During the senescent phase, the model was more sensitive to accuracy in 

kPAR and kRn, involved in energy partition into soil and vegetation.  

Under annual Mediterranean conditions, most of the uncertainty was related to the partition 

of energy between soil and vegetation, shown by the highest sensitivity to the two coefficients of 

extinction of radiation: kPAR (50%) involved in LAI estimates, and kRn (20%) both contributing to 

estimate the net radiation reaching the soil component. This is similar to the situation during the 

senescent phase in the Sahel. Seasonally, the relative importance of each variable was similar to 

the annual pattern, except in January when modeled LE was more sensitive to accuracy in Rn.  

Figure 3 shows how in both ecosystem types, mean effect and total effect (that considers 

interactions) on evapotranspiration were very similar with differences around 1-2%, indicating 

low effect of variable interactions. 
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Figure 3. Upper panels: sensitivity of modeled evapotranspiration according to mean annual conditions (% percentage of explained 
variance). Main effect is the variance explained without considering interactions among variables and total effect considering 
interactions. Lower panels: sensitivity of modeled evapotranspiration considering monthly conditions in the Sahelian savanna and 
Mediterranean grasslands (total effect). Uncertainty levels were set as ±10% of the mean for input variables NDVI, Tam, Rn, and G 
and of ±25% of the mean for the soil moisture (fSM) and plant temperature (fT) constraints. For constant model parameters: m1, b1, 
m2, b2, kRn, and kPAR, the range of uncertainty was based on values used in the literature.  

 

 

Evaluation of the PT-JPL-daily evapotranspiration model with Eddy Covariance data 

Soil Moisture Constraint from Measured Soil Moisture (fSM-SWC) 

In the Sahelian savanna the performance of PT-JPL-daily LE model using measured SWC 

(fSM-SWC) was similar regardless of the fAPAR and LAI estimate used (FDaSWC or FDbSWC) (R
2=0.85-

0.86 and MAE=14.14-13.54) (Table 5 and Fig. 4a and 4b). In the Mediterranean grasslands, both 

the coefficient of determination and errors were also similar regardless of the fAPAR and LAI used 

(R2=0.75-0.74; MAE=10.66-11.44) (Table 5 and Fig. 5a and 5b). Therefore, PT-JPL-daily 

formulation is capable to reproduce the dynamics of LE in the Mediterranean grasslands, as it 

explained 75% of the LE variance. Considering that the uncertainty of the energy balance closure 

from Eddy Covariance data in this Mediterranean site, calculated at daily time scale, represents 

21.7% of the available energy (Rn-G), the accuracy obtained with PT-JPL-daily using fSM-SWC is 

closest to the one from Eddy Covariance. In the Sahel, the model explains up to 86% of the 

variance, which considering that the closure error is 5.78% of the available energy at daily scale 

is also close to the instrumental accuracy. However, in this site during the growing season there 



Capítulo 4 

 128 

was a systematic underestimate of LE during the period of maximum growth followed by an 

overestimate, independently of the fAPAR and LAI used (Fig. 4a and 4b).  

 

 

Table 5: Evaluation of PT-JPL-daily LE with Eddy Covariance data. In the savanna the results have 
been evaluated between June and December 2007 and in the Mediterranean grasslands between 
January and June 2011. Model versions starting with “FDa” were run with fAPAR-NDVI and LAINDVI and 
with “FDb” with fAPAR-MODIS and LAIMOD1S. fSM-SWC  is the soil moisture constraint derived from 
measured volumetric Soil Water Content, and  fSM-ATI  from Apparent Thermal Inertia. Surface 
temperature and albedo could be acquired from in-situ sensors or from satellite (MSG) sensors. 

Site fSM Model version R2 MAEa biasb RMSEc MAPD (%)d 
FDaSWC 0.85 14.14 7.59 21.45 22.69 
FDbSWC 0.86 13.54 4.02 20.39 21.72 in -situ 
FDaATI-in-situ 0.82 20.69 -1.48 23.88 33.20 
FDbATI-in-situ 0.83 19.72 -7.14 23.10 31.65 
FDaATI-MSG 0.79 23.11 16.52 30.55 37.09 

Sahelian savanna 
(all dates) 

 
satellite 

FDbATI-MSG 0.80 20.21 11.78 26.53 32.43 
FDaSWC 0.75 10.66 10.10 12.43 30.89 
FDbSWC 0.74 11.44 10.96 13.2 33.16 in -situ 
FDaATI-in-situ 0.58 9.66 5.70 11.10 28.01 
FDbATI-in-situ 0.57 9.85 6.21 11.58 28.57 
FDaATI-MSG 0.32 10.16 -3.01 14.48 29.46 

Mediterranean grasslands 
(growing season) 

satellite 
FDbATI-MSG 0.31 10.78 -3.80 15.03 31.26 

a Mean absolute difference ( )∑ = −= n
i ii n/POMAE 1

 
b bias ( ) n/)PO(bias n

i ii∑ = −= 1
 

c Root mean square error    ( )[ ] 21
1

2 /n
i ii n/)PO(RMSE ∑ = −=  

d Mean absolute percentage difference  ( )∑ = −><
= n

i ii n/PO
O

MAPE 1
100 , where Pi is the model-predicted value, Oi  

is the observed value, <O> is the mean observed value, n is the number of observations. 
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Figure 4. Daily LE (Wm-2) in the Sahelian savanna (Agoufou, Mali) from Eddy Covariance data (black dots) and 
modeled (white dots) during 2007.  In the first column (figures a, c, e, g) the model was run using fAPAR-NDVI  and 
LAINDVI and in the second column (figures b, d, f, h) using fAPAR-MODIS and LAIMODIS. In each of the six rows, the model 
was run a different soil moisture constraint: fSM-SWC  from measured volumetric soil water content (figures a, b), fSM-

Fisher from atmospheric water deficit (figures c, d), fSM-ATIin-situ from apparent thermal inertia from in-situ 
measurements (figures e, f), fSM-ATI -MSG from apparent thermal inertia from MSG-SEVIRI measurements (figures g, 
h). 
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Figure 5. Daily LE (Wm-2) in the Mediterranean grassland (Balsa Blanca, Spain) from Eddy Covariance data (black 
dots) and modeled (white dots) during 2007.  In the first column (figures a, c, e, g) the model was run using fAPAR-

NDVI  and LAINDVI and in the second column (figures b, d, f, h) using fAPAR-MODIS and LAIMOD1S. In each of the six rows, 
the model was run a different soil moisture constraint: fSM-SWC from measured volumetric soil water content (figures 
a, b), fSM-Fisher from atmospheric water deficit (figures c, d), fSM-ATIin-situ from apparent thermal inertia from in-situ 
measurements (figures e, f), fSM-ATI -MSG from apparent thermal inertia from MSG-SEVIRI measurements (figures g, 
h). 
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To assess whether this mismatch in the Sahelian site could be related to the LAI and fPAR 

estimates, we compared satellite LAI estimates with field estimates and also evaluated the 

evapotranspiration model ran with field estimates for LAI and fPAR. Comparison of LAI satellite 

products with field estimates (Fig. 6a) showed better correlations with MODIS LAI (R2=0.93) 

than for LAI estimated from NDVI (R2=0.71). Although MODIS LAI underestimated the 

maximum peak and overestimated LAI during growing and senescence stages its phenology 

pattern matched better with the field data than the LAI derived from NDVI (Fig. 6a). In this case, 

the maximum LAI happened earlier in the season than the field maximum LAI, showing also 

greater overestimates during growing and senescent phases. This could explain a slightly better 

performance of the LE model using MODIS products during the growing season (Table 6). 

However, model outputs ran using field measured LAI, fc and fAPAR (estimated as described 

in Mougin et al. 2009) did not improve model performance (see Table 6). Therefore, using 

satellite products for vegetation (LAI and fPAR) to run the model produce similar results than 

using field vegetation estimates. 

 

Table 6: Comparison of model performance during the period of field sampling (DOY: 184-269) in the 
Sahelian savanna (Agoufou). Note that the period used is slightly shorter than for Table 4, and explains 
why the model statistics for FDaSWC and FDbSWC  differ slightly from Model 4 statistics. 
fAPAR, LAI Model version R2 MAEa biasb RMSEc 
fAPAR-NDVI, LAINDVI FDaSWC  0.67 20.53 9.50 26.29 
fAPAR-MODIS, LAIMODIS FDbSWC 0.69 19.66 3.13 24.97 
fAPAR-field, LAIfield FDfield-SWC  (kRn= 0.60) 0.68 21.39 11.26 26.10 
fAPAR-field, LAIfield FDfield-SWC    (kRn=0.75) 0.76 19.23 9.31 20.96 

a Mean absolute difference ( )∑ = −= n
i ii n/POMAE 1

 
b bias ( ) n/)PO(bias n

i ii∑ = −= 1
 

c Root mean square error    ( )[ ] 21
1

2 /n
i ii n/)PO(RMSE ∑ = −=  

where Pi is the model-predicted value, Oi is the observed value, <O> is the mean observed value, n is the number of 
observations. 

 

It seems that when vegetation is changing very rapidly around the seasonal peak in the 

Sahel, the model can account for the general pattern of LE but not for minor ups and downs 

observed in the Eddy Covariance LE. Increasing the energy partition allocated to vegetation by 

using kRn of 0.75, a value obtained by optimization at the site (Ridler et al. 2012), improved 

significantly the results (R2=0.76 vs. R2=0.68) (Table 6). Using this coefficient reduced the LE 

offset after the LAI peak, but not before (Fig. 6b). It should be noted that field LAI estimates 

(Fig. 7) present uncertainty as well, as they were interpolated between the field samplings, 

acquired every ≈ 10 days. Thus, before the maximum LAI peak (DOY=235) the previous field 

sampling was 10 days earlier, making it possible to miss a higher and earlier maximum peak. In 
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that case, LAI underestimates would produce LE underestimates between the period DOY225 

and DOY235 (Fig. 6).  

These results suggest that the model could benefit from an improved energy partitioning 

between soil and canopy considering variable extinction coefficients and separate long-wave and 

short-wave components (Kustas and Norman 1999), as well as from shorter-time scale estimates 

of LAI and fPAR. 

 

 
Figure 6. a) Comparison of LAI estimated from NDVI (LAINDVI), LAI from 
MODIS, and LAI from field estimates during the growing season of 2007 in 
the Sahelian savanna. b) Daily LE (Wm-2) from Eddy Covariance data (black 
dots) and modeled using LAI from field estimates and kRn=0.65 (grey dots) 
and kRn =0.75 (Triangles). R2 refers to the coefficient of determination 
comparing with LAI from field estimates. 
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Soil Moisture Constraint from Atmospheric Variables (fSM-Fisher)  

Estimating LE using fSM-Fisher with the same parameterization as in Fisher et al. (2008) 

(β=1; midday conditions) did not provide meaningful results in the Mediterranean grasslands 

(R2~0.16) (Table 7). In the savanna, correlations were better but well below those found for fSM-

SWC (R2=0.61-0.62) and with high biases around 25-29 W m-2 (Table 4, Fig. 5 and 6). This 

constraint diagnosed the major water stress during the growing season around DOYs 240-

250.We evaluated the sensitivity of fSM-Fisher to β values between 0.05 to 2, and to the use of daily 

average or midday conditions for RH and VPD. Table 7 shows the results when the model was 

run with two different values of β . They are shown in the table as they provided the best results 

in each site: β=0.1 kPa, that was applied at a global scale in Mu et al. (2007), and β=1 kPa 

applied in Fisher et al. (2008) 

In the savanna, the best results corresponded to β=1 kPa and daily average conditions 

(R2=0.80; MAE=18.08 W m-2). In the Mediterranean grasslands PT-JPL-daily performed better 

using β=0.1 (Table 7), especially for midday conditions (R2=0.64-0.53) although LE was 

systematically underestimated (biases≈ 15-17 W m-2). These results suggest a stronger control of 

atmospheric conditions on soil moisture changes in the Mediterranean conditions than in the 

Sahel. Therefore, parameterization using fSM-Fisher should be tuned according to the conditions in 

each site for successful results.  
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Table 7: Evaluation of PT-JPL-daily LE with Eddy Covariance data for different parameterizations of the soil 
moisture constraint derived from atmospheric water deficit: β/VPD

FisherSM RHf =− . Results are shown for midday 

and daily average conditions for RH (relative humidity) and VPD (Vapor Pressure Deficit) and for β=0.1 kPa 
and β=1 kPa. Results from the best performing combination of parameters in each site are shown in bold font. In 
the savanna results were evaluated between June and December 2007 and in the Mediterranean grasslands from 
January to June 2011. Model versions starting with “FDa” were run with fAPAR-NDVI and LAINDVI and with “FDb” 
with  fAPAR-MODIS and LAIMOD1S. 

Site period conditions β β β β (kPa)    Model version R2 MAE bias RMSE MAPE (%) 
FDaFisher 0.69 26.09 14.87 32.81 41.87 

1 
FDbFisher 0.80 18.08 8.47 24.35 29.01 
FDaFisher 0.71 20.49 41.13 53.18 32.88 

daily 

0.1 
FDbFisher 0.66 23.60 37.92 49.94 37.87 
FDaFisher 0.62 32.19 29.27 43.05 51.65 

1 
FDbFisher 0.61 35.72 25.62 40.61 57.32 
FDaFisher 0.68 18.65 43.04 56.21 29.93 

Savanna 
(Agoufou) 

All 
dates 

midday 
0.1 

FDbFisher 0.65 21.86 39.71 52.45 35.09 
FDaFisher 0.16 15.08 -6.68 19.40 43.73 

1 
FDbFisher 0.17 28.25 

-
26.38 

34.44 81.89 

FDaFisher 0.36 21.22 8.49 14.74 66.67 
daily 

0.1 
FDbFisher 0.27 20.40 9.49 16.24 64.10 
FDaFisher 0.16 35.03 -7.02 20.48 110.05 

1 
FDbFisher 0.13 36.24 -8.23 21.92 113.87 

FDaFisher 0.64 14.42 15.61 18.23 45.30 

Mediterranean 
grasslands 
(Balsa 
Blanca) 

growing 
season 
 

midday 
0.1 

FDbFisher 0.53 12.24 17.92 20.66 38.44 

 

Soil Moisture Constraint from Apparent Thermal Inertia (fSM-ATI) 

Using in-situ data, model performance in the savanna for the thermal inertia index fSM-ATI 

was practically equivalent to that using SWC (fSM-SWC), with R2 ≈0.82 and slightly higher errors 

but similar or lower biases (Table 5). Non significant differences were found when using fAPAR 

and LAI from MODIS or a linear function of NDVI except from a slightly lower bias with the 

latter. At the end of the rainy season (DOY 270), fSM-ATI overestimated LE as even at an entirely 

dry soil the ATI index will never become zero, since that would require an infinite temperature 

amplitude (Van doninck et al. 2011).  

In the Mediterranean grasslands, statistics from model performance using fSM-ATI from in-

situ data were again not as good as than in the savanna. Although the R2 using fSM-ATI was lower 

than those obtained with fSM-SWC, the errors decreased and the biases were half of those obtained 

with fSM-SWC. Similar to the savanna site, results were quite similar independently of the LAI and 

fPAR estimate used to run the model.  

When running the model using satellite MSG instead of in-situ data for fSM-ATI, good results 

were obtained in the savanna site in terms of  R2 ~0.80  and MAE=23.1-20.1 W m-2 (Table 5) but 
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higher biases were detected  due to LE underestimates during  the growing season (Fig. 4g, 4h). 

This was due to the fact that the diurnal TR difference (TR-DMax-TR-Dmin) was always higher for 

MSG than for in-situ data (Fig. 7), producing lower soil moisture (fSM) values. 

In the Mediterranean grasslands, using MSG data instead of in-situ to estimate fSM-ATI 

produced a greater loss of accuracy in R2 than in the savanna although errors were similar and 

biases even lower than with in-situ data (Table 5). On one hand, results using in-situ data were 

worse to start with than in the savanna with correlations around R2=0.58. As in the 

Mediterranean site LE is lower (Fig. 2) the model is less tolerant to different error sources. 

Besides the noise apparent in the MSG time-series, the comparability of the diurnal temperature 

difference (TR-DMax-TR-Dmin) between in-situ and MSG data was more problematic than in the 

savanna, with systematically higher MSG values (Fig. 7). Additional inspection of TR (15 

minute) observations between field and satellite (Fig. 8) showed that differences between in-situ 

and satellite were larger in the grasslands (MAE=2.43 °C) than in the savanna (MAE=1.56 °C). 

In the Mediterranean site the sensor viewing angle is 42.68º while in the Sahel it is only 18.01º. 

This results in a larger scale mistmatch at the Mediterranean site between the satellite pixel and 

the footprint of the in-situ sensors as well as greater atmopsheric effects due to a larger 

atmospheric path radiance. 

 

 
Figure 7: Comparison of the diurnal surface temperature difference (TR-DMAX-TR-Dmin) from field (Apogee) 
and satellite (MSG-SEVIRI) sensors in the savanna and in the Mediterranean grassland. 
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The fSM-ATI approach is very sensitive to uncertainty in thermal data since day and night TR 

are used in the denominator (Cai et al. 2007; Sobrino et al. 1998; Verstraeten et al. 2006b). 

Sensitivity to errors is greater when Rn is higher which occurs at the end of the study period in 

the Mediterranean site and the middle of the season in the Sahelian site (Guichard et al. 2009) 

(see Fig. 4g 4h and 5g 5h). In fact, in the Mediterranean grasslands, the lack of fit for fSM-ATI 

MSG (R2 =0.32-0.31) was caused by the last 10 days of the study period (see Fig. 5g and 5h).  

Another important limitation of the ATI methodology is the vulnerability to noise introduced by 

meteorological conditions (Van doninck et al. 2011). Although we have compared only dates 

without clouds according to LSA SAF Quality Flags, inspection of SEVIRI images revealed a 

large cumulus cloud affecting the adjacent pixel of the Mediterranean grasslands location 

unreported in the Quality Flags during the last 10 days of the period. When excluding those days 

R2 increased to 0.64-0.66.  

 

 

 

 
Figure 8: Comparison of 15 minute observations of radiometric surface temperature from field (Apogee) and satellite 
(MSG-SEVIRI) sensors in the savanna and in the Mediterranean grassland during the study period. 
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Comparison with other Evapotranspiration Models in Global Dryland Ecosystems 

In the Sahelian savanna site, a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced 

with some of the same in-situ climatic inputs and vegetation parameters was calibrated using 

multi-objective functions during the 2007 growing season (Ridler et al. 2012). 

Calibration of the SVAT model with in-situ TR and SWC showed better results (R2=0.81) 

(Table 8) than PT-JPL-daily during the growing season calibrated with field data when 

correlations were around R2=0.67-0.65 (see Table 6). Nonetheless, daily errors were similar in 

magnitude and in fact underestimates were higher (bias=12.26 W m-2, not shown) than with PT-

JPL–daily (Table 6). These results are reasonable as the SVAT model, based on the two-source 

(Shuttleworth and Wallace 1985) model coupled to a hydrological model, has a stronger physical 

basis (Overgaard 2005). It requires several plant and soil parameters such as root depth, 

minimum stomatal conductance, soil hydraulic conductivity, as well as atmospheric variables 

including rainfall, wind speed, and relative humidity at 15-minute time scale. However, 

calibration of the SVAT model with both MSG and AMSR-E (Advanced Microwave Scanning 

Radiometer) satellite data for operational purposes decreased correlations to R2=0.63 equivalent 

to PT-JPL-daily results during the growing season (Table 8 and Table 6). Results from a simpler 

modeling approach based on the triangle relationship (Stisen et al. 2008), estimated LE in the 

Sahel in a site with higher rainfall (487 mm in 2005) with similar error levels to our Agoufou site 

and also underestimates: RMSE=31.00 W m-2. Correlations were higher (R2 =0.75) than in our 

model. Sun et al. (2011) model results based on a water-deficit index in an open savanna in 

Sudan using a combination of MODIS and SEVIRI products, produced similar results than PT-

JPL-daily run with satellite products (R2=0.73 and MAE=26 W m-2) considering the fact that 

they acquired Ta from ECMWF weather forecasts product and we used in-situ Ta. In this case, the 

peak LE was also underestimated. Although the model captures LE changes at the beginning of 

the season, it seems that the transpiration processes in conditions of the Sahel are difficult to 

reproduce during the period of plant growth as different studies underestimate LE during the 

growing season independently of model complexity (Ridler et al. 2012). For instance, in the 

semiarid savanna in Niger, the SVAT model SEt_HyS-savanna that presents an additional tree-

layer, systematically underestimated peak LE despite of added model complexity and a high 

degree of parameterization (Saux-Picart et al. 2009) (R2=0.66-0.64, their results have not 

included in Table 7 as they represent 30 minute and not daily estimates).  

Compared to other models using remote sensing information in the same Mediterranean 

grasslands site, PT-JPL-daily performed better. For instance, LE estimates using fSM-SWC were 
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more accurate (R2=0.75; MAE ~10 W m-2) than those from a Penman-Monteith model adapted 

by Leuning et al. (2008) (hereinafter PML). In the PML the soil evaporation fraction was 

estimated with measured SWC, similarly to fSM-SWC (Capítulo 3) (Table 8). In addition, the PML 

required optimization with field-measured LE and meteorological variables such as VPD, or 

estimation of aerodynamic and surface conductances. Two more operational parameterizations of 

PML for the soil evaporation fraction based on measured rainfall produced also poorer results for 

PML at the same site (Table 8) (Capítulo 3), with similar results to PT-JPL-daily run with 

satellite MSG data for fSM-ATI, and poorer than PT-JPL-daily run with fSM-ATI in-situ (R2
≈0.58, 

MAE ≈10 W m-2).  

PT-JPL-daily LE estimates using MSG data for fSM provided also better correlations than a 

triangle approach run with MODIS TR and NDVI (R2=0.24) despite of lower errors (MAE=3.56 

W m-2) (Garcia et al. in review). LE estimates from the more physically based two source model 

(TSM) (Norman et al. 1995)  run with in-situ TR from exactly the same dataset and aggregated at 

daily-time scale (applying the Bowen ratio to ensure the energy closure for EC measurements)  

were also less accurate (R2 =0.34-0.31) than PT-JPL-daily run with in-situ or MSG TR results 

(Capítulo 1) (Table 8). TSM results using separate measurements of soil and vegetation TR 

instead of an aggregated measure did not improved the results (Capítulo 1).  

Finally, to place the results from PT-JPL-daily ran with ATI in the context of global 

drylands, we compared them with studies using Penman-Monteith remote sensing (PM) or 

Priestley-Taylor (PT) models over savannas and grasslands at dryland sites from different 

regions of the globe (Table 8). These comparisons should always be considered with caution as 

each model uses different input data sources and both the environmental conditions and the 

vegetation change. However, we have focused on the less accurate PT-JPL-daily algorithm, 

amenable for regionalization (FDaATI-MSG) ran with satellite MSG and MODIS data both for 

vegetation and soil moisture constraints, leaving Ta and available energy as the only field input 

variables used. 
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Table 8: Statistics from actual evapotranspiration models using remote sensing data over dryland savanna and grassland sites. Climate 
classification is based on Köppen-Geiger (Kottek et al. 2006) where BWh: Arid/desert/hot air; BSk: cold/semiarid, Aw: 
Equatorial/desert; Csb: warm temperate/summer dry/warm summer; Cfb: Warm temperate/fully humid/warm summer; Csa: Warm 
temperate/summer dry/hot summer. A brief description of model type is included. When errors where reported in mm day-1 they have 
been converted into W m-2. Statistics in parenthesis refer to the model type explanations in parenthesis 
Ecosystem 
type Site Country 

Lat ° 
Lon° 

Climate 
 type Model type R2 MAE RMSE Reference 

Open woody 
savanna 

Sahel 
(Agoufou) 

Mali 
15.34, 
-1.48 

BWh 
PT-JPL-daily fSM-ATI  
satellite ( in–situ) 

0.80 
(0.83) 

20.21 
(19.72) 

26.53 
(23.10) This study 

Open woody 
savanna 

Sahel 
(Agoufou) 

Mali 
15.34, 
-1.48 

BWh 
SVAT in-situ 
calibration 

0.81 16.57 9.90 
Ridler et al. 
(2012)* 

Open woody 
savanna 

Sahel 
(Agoufou) 

Mali 
15.34, 
-1.48 

BWh 
SVAT satellite 
calibration 

0.63 39.24 46.66 
Ridler et al. 
(2012)* 

Open woody 
savanna 

Sahel (Dahra) Senegal 
15.41  
-15.47 

BWh 
Triangle using 
SEVIRI/MODIS 

0.75 - 31.00 
Stisen et al. 
(2008) 

Open woody 
savanna 

Sahel  (SD-
DEM) 

Sudan 
13.28 
-0.48 

BWh 
Sim-ReSET using 
SEVIRI/MODIS 

0.73 26.00 - 
Sun et al. 
(2011) 

Open woody 
savanna 

Virginia Park Australia 
-19.88 
146.55 
 

Aw 
PM- in- situ 
meteorological 

0.23 - 112.1 
Cleugh et al. 
(2007) 

Open woody 
savanna 

Virginia Park Australia 
-19.88 
146.55 
 

Aw 
PML-optimized 
with hydrol. model 

0.49 - 15.94 
Zhang et al. 
(2010) 

Savanna 
Howard 
Springs 

Australia -12.50° 
131.15 

Aw 
PML-optimized 
with hydro. model 

0.53 - 32.18 
(Zhang et al. 
2010) 

Woody 
savanna 

AZ - 
Flagstaff - 
Wildfire 

USA 
35.40 
-111.80 

Csb 
MOD16. PM new 
version (old version)  

0.06 
(0.42) 

- 23.92 
(18.51) 

Mu et al. 
(2011) 

Woody 
savanna 

TX -Freeman 
Ranch  
Mesquite 
Juniper 

USA 
29.9  
-98.0 

Cfa 
MOD16. PM new 
version (old version)  

0.48 
(0.52) 

- 25.91 
(30.76) 

Mu et al. 
(2011) 

Mediterranean 
savanna 

CA - Tonzi 
Ranch 

USA 
38.4 
 -121.0 

Csa 
MOD16. PM new 
version (old version)  

0.61 
(0.53) 

- 19.08 
(21.36) 

Mu et al. 
(2011) 

Mediterranean 
savanna 

CA - Tonzi 
Ranch 

USA 
38.4 
 -121.0 

Csa 
PM (field eddy 
calibration) 

0.57 - 30.19 
Yuan et al. 
(2010) 

Mediterranean 
savanna 

CA - Tonzi 
Ranch 

USA 38.4 Csa 
PT-JPL-daily 0.74 

(Kendall)  19.39 
Vinukollu et 
al. (2011) 

Mediterranean 
grasslands 

Balsa Blanca Spain 
36.94 
 -2.03 

BSk 
PT-JPL-daily 
fSM-ATI  satellite  
( in–situ) 

0.31 
(0.57) 

10.78 
(11.44) 

15.03 
(10.96) 

This study 

Mediterranean 
grasslands 

Balsa Blanca Spain 
36.94 
 -2.03 

BSk PML-input SWC  0.54 13.03 - Capítulo 3 

Mediterranean 
grasslands 

Balsa Blanca Spain 
36.94 
 -2.03 

BSk 
PML –input rainfall 
(two methods) 

0.32- 
0.47 

13.88-
9.92 

- Capítulo 3 

Mediterranean 
grasslands 

Balsa Blanca Spain 
36.94 
 -2.03 

BSk 
Triangle using 
MODIS 

0.24 3.56 - 
Garcia et al. 
(in rev.) 

Mediterranean 
grasslands 

Balsa Blanca Spain 
36.94 
 -2.03 

BSk 
TSM with Ts 
composite in 
parallel (series)  

0.34 
 (0.31) 

39.05 
(53.82) 

43.89 
(58.52) 

Capítulo 1* 

Mediterranean 
grasslands 

Balsa Blanca Spain 
36.94 
 -2.03 

BSk 
TSM  with Ts soil, 
Ts canopy in 
parallel (series) 

0.14  
(0.25) 

44.86 
(57.67) 

51.00 
(62.50) Capítulo 1* 

Arid steppe 
grasslands 

AZ -
Audubon 
Research 
Ranch 

USA 
31.6  
-110.5 

BSk 
MOD16. PM new 
version (old version)  

0.22 
(0.48) 

- 23.07 
(23.07) 

Mu et al. 
(2011) 

Arid steppe 
grasslands 

AZ -
Audubon 
Research 
Ranch 

USA 31.6  
-110.5 

BSk 

PT-JPL-daily 0.37 
(Kendal)  

- 18.75 
Vinukollu et 
al. (2011) 

Arid steppe 
grasslands 

AZ - Walnut 
Gulch 
Kendall 
Grasslands 

USA 
31.7 
-109.9 

BSk 
MOD16. PM new 
version (old version)  

0.07 
(0.25) 

- 19.36 
(18.51) 

Mu et al. 
(2011) 

Mediterranean 
grassland 

CA-
Vairaranch 

USA 
38.40  
-120.9 

Csa 
PM (field eddy 
calibration) 

0.51 - -4.56 
Yuan et al. 
(2010) 

*30 minute model outputs provided by the authors have been aggregated to daily time scale, applying the Bowen ratio method for ensure  
the energy closure of EC derived fluxes, in this work to compare with the rest of the models. 
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It can be seen in Table 8 that PT-JPL-daily FDaATI-MSG in the Sahelian savanna (R2=0.80; 

RMSE=26.53 W m-2) performed better in general than PM models at other savanna sites 

although it has to be considered that not all these models were forced with local meteorological 

inputs (Table 8). Thus, the PML improved algorithm from Zhang et al. (2010) where maximum 

stomatal conductance is optimized with a hydro-meteorological model, showed lower R2 at two 

Australian savannas (R2= 0.53 and 0.49) less arid than our site (with 1764 mm and 526 mm of 

annual rainfall respectively) with the PT-JPL-daily error within the range of those two sites 

(Table 8). Results from a PM model in one of the Australian savannas forced with in-situ 

meteorological inputs were also poorer than our results (R2=0.23) (Cleugh et al. 2007). Our 

algorithm performed also better than the MODIS product for evapotranspiration (MOD16) of 

Mu et al. (2011), in three woody savannas in arid regions of the USA (with R2 ranging from 

0.06-0.61). Again, PT-JPL-daily errors were within Mu et al. (2011) ranges of error at those 

savanna sites (RMSE = 18.51-30.6 W m-2). In another global study (Yuan et al. 2010) used a PM 

approach optimized with Eddy Covariance LE from 21 sites. Their model in the Mediterranean 

savanna of Tonzi performed worse (Table 8) than PT-JPL-daily using fSM-ATI MSG in the Sahelian 

savannah although it should be noted that they used air temperature from reanalysis. In the same 

savanna of Tonzi ranch,Vinukollu et al. (2011) applied a daily version of the PT-JPL model with 

the soil moisture constraint based on the water vapor deficit although the error was low 

(RMSE=18.75 W m-2) the non-parametric Kendall’s Tau (equivalent to Pearson-correlation 

coefficient) was 0.74 using only satellite input data. 

Regarding the Mediterranean grassland site, our model LE results using satellite data for 

soil moisture and vegetation (FDaATI-MSG) (R
2=0.32; RMSE=15.03 W m-2) were in the range of 

the MOD16 algorithm of Mu et al. (2011) for two arid steppe grasslands in the USA with 

R2=0.48 (Audubon) and 0.25 (Walnut Gulch) respectively with the old algorithm version and 

R2=0.05 and 0.49 with the new version. Our PT-JPL-daily model errors were lower than Mu et 

al. (2011); RMSE=22.95 and 18.42 W m-2 with the old algorithm and RMSE=22.95 and 19.26 W 

m-2 with the new algorithm. In Audubon steppe the PT-JPL-daily model of Vinukollu et al. 

(2011) was not very successful in capturing the temporal dynamics (Kendall’s Tau = 0.37) but 

showed still a better performance than Mu et al. (2011) algorithm ran during the same time (not 

shown in Table 8). Results from Yuan et al. (2010) PM model calibrated with field data at 

another Mediterranean grassland (Vairaranch) were better than our model results R2=0.51 and 

bias=0.16 W m-2.  
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CONCLUSIONS  
 

The Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) evapotranspiration LE model, 

developed by Fisher et al. (2008) is based on the Priestley-Taylor equation downscaled 

according to multiple stresses. The PT-JPL is attractive for its simplicity and potential for 

regionalization using satellite data. In this study, a daily version of the model was evaluated in 

some of the most extreme conditions from the point of water availability: an open woody 

savanna in the Sahel and a Mediterranean grassland, both with annual rainfall below 400 mm. A 

new approach was tested with in-situ and satellite data using a soil moisture constraint based on 

the Apparent Thermal Inertia concept (fSM-ATI) relying on remotely sensed observations of surface 

temperature and albedo.  

When using field measured soil water content (SWC) to estimate the soil moisture 

constraint, the daily PT-JPL model reproduced the LE dynamics measured from Eddy 

Covariance systems within the uncertainty levels of the closure error system. When using the 

Apparent Thermal Inertia index fSM-ATI at the Sahelian savanna, results with in-situ data were 

equivalent to those obtained using field measured SWC. When up-scaling the fSM-ATI to MSG-

SEVIRI satellite data, a satisfactory agreement with field data was also found (R2=0.80; 

MAE=20.21 W m-2). At the Mediterranean grassland, results using fSM-ATI were less accurate both 

for in-situ and satellite data (R2=0.57-0.31: MAE=9.85-10.78 W m-2 respectively) but still 

outperformed reported results of two more complex models ran at the site: the Two Source 

Model (TSM) and the Penman-Monteith-Leuning (PML) model.  

In the context of global drylands, the PT-JPL LE model using fSM-ATI provide results 

comparable in accuracy to more complex models at similar savanna and grassland biomes. 

Nonetheless, efforts should be made when using fSM-ATI to reduce evapotranspiration 

overestimates when the soil is completely dry and to improve the cloud-mask algorithm as the 

fSM-ATI is very sensitive to changes in solar irradiance.  

This study also showed that the original model formulation for soil moisture constraint, fSM, 

relying on the atmospheric water deficit should be calibrated differently in each site to obtain 

meaningful LE results. Therefore, the use of soil moisture constraints like ATI based on routinely 

available products like surface temperature or albedo or from soil moisture missions like the 

SMOS (Soil Moisture & Ocean Salinity mission) or the future NASA mission SMAP (Soil 

Moisture Active Passive) would eliminate the need of water vapor data and field site calibrations 

at dryland regions. The described modeling framework is also suitable for introducing 
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information from spectral regions currently under-used in evapotranspiration models. For 

example, canopy water status could be tracked by short-wave infrared indices (Ceccato et al. 

2002; Zarco-Tejada et al. 2003) and photosynthetic activity by narrow-band indices like the 

Photochemical Reflectance Index, PRI (Gamon et al. 1997). Due to the strong coupling between 

evapotranspiration and carbon assimilation fluxes in dryland regions, some of the biophysical 

constraints used in this model could be used to regionalize Gross Primary Productivity (GPP) 

estimates based on Light Use Efficiency models. 
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CONCLUSIONES GENERALES 
 
 
1. El modelo residual Two-source model, TSM, basado en medidas de temperatura superficial, 

no fue capaz de ofrecer estimas con errores aceptables de la evapotranspiración a escala 

instantánea de 15 minutos. Sin embargo, sí fue capaz de estimar el calor sensible y la radiación 

neta con un grado de exactitud aceptable demostrando así la efectividad del proceso iterativo 

incluido en su formulación para desagregar la temperatura superficial (TR) en sus componentes, 

suelo (Ts) y vegetación (Tc). Estos resultados evidencian las limitaciones de la estimación 

residual de LE en áreas semiáridas mediterráneas, en donde errores aceptables en H y Rn (del 

30% y el 10% respectivamente), tuvieron un fuerte impacto sobre los valores de LE obtenidos de 

forma residual dada la reducida magnitud de LE en este tipo de ecosistemas.  

 

2. La exactitud del TSM presentó una variación diurna, viéndose afectada tanto por la elevación 

solar como por la hora del día. Nuestros resultados demuestran que al menos en áreas semiáridas 

naturales, la aplicación del TSM ofrece mejores resultados en condiciones de elevación solar 

mayor a 25º y durante las horas del día comprendidas entre las 10:00 y las 15:00 (ambos factores 

incluidos) ya que, en condiciones distintas a estas, el TSM generó mayores errores en sus 

estimas.  

 

3. Las condiciones meteorológicas que mas afectaron a la exactitud del modelo en zonas 

semiáridas naturales fueron el gradiente de temperatura entre la superficie y el aire (TR-Ta) y la 

velocidad del viento (WS), siendo mejores los resultados del TSM cuando ambos fueron altos. 

En áreas semiáridas el TSM no se vio afectado por la presencia de nubes o por condiciones de 

vegetación senescente, ambas condiciones bajo las que el TSM ha demostrado una reducción de 

su exactitud según trabajos previos efectuados en áreas no limitadas hídricamente. Esto 

demuestra una diferente sensibilidad del TSM en áreas semiáridas naturales.  

 

4. En condiciones semiáridas naturales el TSM fue capaz de ofrecer buenas estimas diurnas del 

calor sensible, HD, aplicando métodos de extrapolación temporal, pero no del calor latente cuyo 

valor fue fuertemente sobreestimado en todos los casos con errores mayores del 100% aunque un 

alto porcentaje de su variación fue recogido por el modelo (R2 >0.8). Para obtener valores 

diurnos de H y LE mediante el TSM con los menores errores es necesario promediar las estimas 

instantáneas obtenidas a lo largo de todo el periodo diurno (Averaging method). Este método es 
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más eficaz que asumir que el valor estimado de la fracción evaporativa al medio día se mantiene 

constante a lo largo del periodo diurno (NEF o EF method). 

 

5. Las dos formulaciones posibles del TSM, con las resistencias en serie (TSMS) o en paralelo 

(TSMP), ofrecieron resultados instantáneos similares aunque el TSMP redujo los porcentajes de 

error promedio de H y LE, mientras que el TSMS permitió una mejor partición de los flujos entre 

suelo y vegetación y mostró un comportamiento mas robusto ante la variación de las condiciones 

meteorológicas. Sin embargo, para obtener valores diurnos de H y LE, el empleo de TSMP 

presentó claras ventajas sobre TSMS, ofreciendo mejores resultados. 

 

6. El modelo directo Penman-Monteith-Leuning, PML, logró obtener estimas de la 

evapotranspiración diaria con un grado de exactitud razonable (30-35%) en condiciones 

semiáridas, gracias a la adaptación de su formulación original mediante la incorporación de la 

variación temporal de la evaporación del suelo. La modificación introducida logró reproducir el 

comportamiento pulsátil típico de la evaporación del suelo en zonas semiáridas de vegetación 

dispersa, mejorando la eficacia del modelo PML en dichas condiciones en las que la evaporación 

del suelo no puede considerarse constante tal como plantea su formulación original.   

 

7. De los tres métodos evaluados para estimar la evaporación del suelo, el mejor es el método 

fdrying que emplea la relación entre la precipitación y la evaporación potencial del suelo 

acumuladas durante los 16 días previos a un evento de lluvia e incluye un factor para la 

simulación del secado del suelo posterior a la lluvia. Empleando fdrying la aplicación del PML 

precisa de la calibración local de dos parámetros: la conductancia máxima de las hojas (gsx) y la 

velocidad de secado del suelo (ω).  

 

8. La adaptación del modelo directo Priestley-Taylor-Jet Propulsion Laboratory, PT-JPL, para la 

estimación diaria de E mediante la modelización de la evaporación del suelo en función de los 

cambios en la humedad del suelo representados mediante la inercia térmica (fSM-ATI) empleando 

datos de temperatura superficial y albedo, presentó mejores resultados en un área de sabana en el 

Sahel que en un espartal mediterráneo. Aún así, en dicho espartal mediterráneo el modelo PT-

JPL ofreció mejores estimas diarias de E que los modelos PML y TSM.  

 

9. En el área de sabana del Sahel, el empleo de datos de temperatura y albedo ofrecidos por el 

sensor remoto MSG-SEVIRI ofreció resultados similares al empleo de mediciones in-situ de 
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dichas variables, mientras que en el espartal mediterráneo los resultados empeoraron al emplear 

datos remotos. La adaptación propuesta del modelo PT-JPL, permite obtener resultados similares 

a los obtenidos en áreas semiáridas naturales mediante otros modelos más complejos que 

requieren un mayor número de datos de medición local o parámetros calibrados 

experimentalmente.  

 

10. Nuestros resultados evidencian la mayor idoneidad de los modelos directos para la 

estimación regional de E en áreas semiáridas de vegetación dispersa frente a los modelos 

residuales. Dentro de los modelos directos, la adaptación propuesta del modelo PT-JPL se 

presenta como la mejor opción, tanto por su sencillez, como por su aplicabilidad regional, 

gracias al empleo de la inercia térmica (fSM-ATI), mediante datos remotos de albedo y temperatura 

superficial.  

 

 





 

  

 

 

 

 

 

 

“Esto es un desafío, es decir: voy a poder con este reto, voy a poder con el vértigo, con el 

frío, con el agotamiento…. es igual. Es meterse algo en la cabeza y conseguirlo.  

Nunca tires la toalla, nunca, siempre hay una oportunidad.  

Cima! reunión! fuera! ” 

 

Jesus Calleja, 

 Ascensión cara oeste del Naranjo de Bulnes  
 

 

 

 

 

 

 

 

 

 


